Упорядочивание проекта

This commit is contained in:
Andrey Pokidov 2025-11-26 22:43:29 +07:00
parent 0dcd9c0d4d
commit 89dfd7644b
32 changed files with 1730 additions and 1719 deletions

View file

@ -30,6 +30,7 @@
<ClInclude Include="matrixes.h" />
<ClInclude Include="quaternion.h" />
<ClInclude Include="rotation3.h" />
<ClInclude Include="types.h" />
<ClInclude Include="utilities.h" />
<ClInclude Include="slerp.h" />
<ClInclude Include="versor.h" />

View file

@ -69,6 +69,9 @@
<ClInclude Include="slerp.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
<ClInclude Include="types.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<ClCompile Include="angle.c">

View file

@ -27,23 +27,35 @@ extern inline void bgc_complex_swap_fp64(BgcComplexFP64* number1, BgcComplexFP64
extern inline void bgc_complex_convert_fp64_to_fp32(const BgcComplexFP64* source, BgcComplexFP32* destination);
extern inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcComplexFP64* destination);
extern inline void bgc_complex_reverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* reverse);
extern inline void bgc_complex_reverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* reverse);
extern inline void bgc_complex_make_opposite_fp32(BgcComplexFP32* number);
extern inline void bgc_complex_make_opposite_fp64(BgcComplexFP64* number);
extern inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized);
extern inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized);
extern inline void bgc_complex_get_opposite_fp32(const BgcComplexFP32* number, BgcComplexFP32* opposite);
extern inline void bgc_complex_get_opposite_fp64(const BgcComplexFP64* number, BgcComplexFP64* opposite);
extern inline void bgc_complex_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate);
extern inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate);
extern inline int bgc_complex_normalize_fp32(BgcComplexFP32* number);
extern inline int bgc_complex_normalize_fp64(BgcComplexFP64* number);
extern inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverted);
extern inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverted);
extern inline int bgc_complex_get_normalized_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized);
extern inline int bgc_complex_get_normalized_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized);
extern inline void bgc_complex_get_product_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result);
extern inline void bgc_complex_get_product_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result);
extern inline void bgc_complex_conjugate_fp32(BgcComplexFP32* number);
extern inline void bgc_complex_conjugate_fp64(BgcComplexFP64* number);
extern inline int bgc_complex_get_ratio_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient);
extern inline int bgc_complex_get_ratio_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient);
extern inline void bgc_complex_get_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate);
extern inline void bgc_complex_get_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate);
extern inline int bgc_complex_invert_fp32(BgcComplexFP32* number);
extern inline int bgc_complex_invert_fp64(BgcComplexFP64* number);
extern inline int bgc_complex_get_inverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverse);
extern inline int bgc_complex_get_inverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverse);
extern inline void bgc_complex_multiply_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result);
extern inline void bgc_complex_multiply_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result);
extern inline int bgc_complex_devide_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient);
extern inline int bgc_complex_devide_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient);
extern inline void bgc_complex_add_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* sum);
extern inline void bgc_complex_add_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* sum);
@ -54,13 +66,10 @@ extern inline void bgc_complex_add_scaled_fp64(const BgcComplexFP64* basic_numbe
extern inline void bgc_complex_subtract_fp32(const BgcComplexFP32* minuend, const BgcComplexFP32* subtrahend, BgcComplexFP32* difference);
extern inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcComplexFP64* subtrahend, BgcComplexFP64* difference);
extern inline void bgc_complex_subtract_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* difference);
extern inline void bgc_complex_subtract_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* difference);
extern inline void bgc_complex_multiply_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product);
extern inline void bgc_complex_multiply_by_number_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product);
extern inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product);
extern inline void bgc_complex_divide_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient);
extern inline void bgc_complex_divide_by_number_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient);
extern inline void bgc_complex_divide_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient);
extern inline void bgc_complex_get_mean_of_two_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* mean);
@ -69,14 +78,8 @@ extern inline void bgc_complex_get_mean_of_two_fp64(const BgcComplexFP64* number
extern inline void bgc_complex_get_mean_of_three_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const BgcComplexFP32* number3, BgcComplexFP32* mean);
extern inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const BgcComplexFP64* number3, BgcComplexFP64* mean);
extern inline void bgc_complex_interpolate_linearly_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation);
extern inline void bgc_complex_interpolate_linearly_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation);
extern inline void bgc_complex_minimize_fp32(const BgcComplexFP32* number, BgcComplexFP32* minimal);
extern inline void bgc_complex_minimize_fp64(const BgcComplexFP64* number, BgcComplexFP64* minimal);
extern inline void bgc_complex_maximize_fp32(const BgcComplexFP32* number, BgcComplexFP32* maximal);
extern inline void bgc_complex_maximize_fp64(const BgcComplexFP64* number, BgcComplexFP64* maximal);
extern inline void bgc_complex_interpolate_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation);
extern inline void bgc_complex_interpolate_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation);
extern inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2);
extern inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2);

View file

@ -142,23 +142,75 @@ inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcCo
destination->imaginary = source->imaginary;
}
// ================== Reverse =================== //
// ================== Negative ================== //
inline void bgc_complex_reverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* reverse)
inline void bgc_complex_make_opposite_fp32(BgcComplexFP32* number)
{
reverse->real = -number->real;
reverse->imaginary = -number->imaginary;
number->real = -number->real;
number->imaginary = -number->imaginary;
}
inline void bgc_complex_reverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* reverse)
inline void bgc_complex_make_opposite_fp64(BgcComplexFP64* number)
{
reverse->real = -number->real;
reverse->imaginary = -number->imaginary;
number->real = -number->real;
number->imaginary = -number->imaginary;
}
inline void bgc_complex_get_opposite_fp32(const BgcComplexFP32* number, BgcComplexFP32* opposite)
{
opposite->real = -number->real;
opposite->imaginary = -number->imaginary;
}
inline void bgc_complex_get_opposite_fp64(const BgcComplexFP64* number, BgcComplexFP64* opposite)
{
opposite->real = -number->real;
opposite->imaginary = -number->imaginary;
}
// ================= Normalize ================== //
inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized)
inline int bgc_complex_normalize_fp32(BgcComplexFP32* number)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = sqrtf(1.0f / square_modulus);
number->real *= multiplicand;
number->imaginary *= multiplicand;
return 1;
}
inline int bgc_complex_normalize_fp64(BgcComplexFP64* number)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = sqrt(1.0 / square_modulus);
number->real *= multiplicand;
number->imaginary *= multiplicand;
return 1;
}
inline int bgc_complex_get_normalized_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
@ -169,6 +221,8 @@ inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
normalized->real = 0.0f;
normalized->imaginary = 0.0f;
return 0;
}
@ -180,7 +234,7 @@ inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP
return 1;
}
inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized)
inline int bgc_complex_get_normalized_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
@ -191,6 +245,8 @@ inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
normalized->real = 0.0;
normalized->imaginary = 0.0;
return 0;
}
@ -204,13 +260,23 @@ inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP
// ================= Conjugate ================== //
inline void bgc_complex_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate)
inline void bgc_complex_conjugate_fp32(BgcComplexFP32* number)
{
number->imaginary = -number->imaginary;
}
inline void bgc_complex_conjugate_fp64(BgcComplexFP64* number)
{
number->imaginary = -number->imaginary;
}
inline void bgc_complex_get_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate)
{
conjugate->real = number->real;
conjugate->imaginary = -number->imaginary;
}
inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate)
inline void bgc_complex_get_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate)
{
conjugate->real = number->real;
conjugate->imaginary = -number->imaginary;
@ -218,7 +284,7 @@ inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexF
// =================== Invert =================== //
inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverted)
inline int bgc_complex_get_inverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverse)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
@ -228,13 +294,13 @@ inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32*
const float multiplicand = 1.0f / square_modulus;
inverted->real = number->real * multiplicand;
inverted->imaginary = -number->imaginary * multiplicand;
inverse->real = number->real * multiplicand;
inverse->imaginary = -number->imaginary * multiplicand;
return 1;
}
inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverted)
inline int bgc_complex_get_inverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverse)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
@ -244,70 +310,20 @@ inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64*
const double multiplicand = 1.0 / square_modulus;
inverted->real = number->real * multiplicand;
inverted->imaginary = -number->imaginary * multiplicand;
inverse->real = number->real * multiplicand;
inverse->imaginary = -number->imaginary * multiplicand;
return 1;
}
// ================ Get Product ================= //
inline void bgc_complex_get_product_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result)
inline int bgc_complex_invert_fp32(BgcComplexFP32* number)
{
const float real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const float imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
result->real = real;
result->imaginary = imaginary;
return bgc_complex_get_inverse_fp32(number, number);
}
inline void bgc_complex_get_product_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result)
inline int bgc_complex_invert_fp64(BgcComplexFP64* number)
{
const double real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const double imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
result->real = real;
result->imaginary = imaginary;
}
// ================= Get Ratio ================== //
inline int bgc_complex_get_ratio_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return 0;
}
const float real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const float imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const float multiplier = 1.0f / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
inline int bgc_complex_get_ratio_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return 0;
}
const double real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const double imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const double multiplier = 1.0 / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
return bgc_complex_get_inverse_fp64(number, number);
}
// =============== Get Exponation =============== //
@ -358,29 +374,35 @@ inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcCo
difference->imaginary = minuend->imaginary - subtrahend->imaginary;
}
// ============== Subtract scaled =============== //
inline void bgc_complex_subtract_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* difference)
{
difference->real = basic_number->real - scalable_number->real * scale;
difference->imaginary = basic_number->imaginary - scalable_number->imaginary * scale;
}
inline void bgc_complex_subtract_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* difference)
{
difference->real = basic_number->real - scalable_number->real * scale;
difference->imaginary = basic_number->imaginary - scalable_number->imaginary * scale;
}
// ================== Multiply ================== //
inline void bgc_complex_multiply_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product)
inline void bgc_complex_multiply_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* product)
{
const float real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const float imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
product->real = real;
product->imaginary = imaginary;
}
inline void bgc_complex_multiply_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* product)
{
const double real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const double imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
product->real = real;
product->imaginary = imaginary;
}
// ============= Multiply By Number ============= //
inline void bgc_complex_multiply_by_number_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product)
{
product->real = multiplicand->real * multiplier;
product->imaginary = multiplicand->imaginary * multiplier;
}
inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product)
inline void bgc_complex_multiply_by_number_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product)
{
product->real = multiplicand->real * multiplier;
product->imaginary = multiplicand->imaginary * multiplier;
@ -388,14 +410,54 @@ inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const
// =================== Divide =================== //
inline void bgc_complex_divide_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient)
inline int bgc_complex_devide_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient)
{
bgc_complex_multiply_fp32(dividend, 1.0f / divisor, quotient);
const float square_modulus = bgc_complex_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return 0;
}
const float real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const float imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const float multiplier = 1.0f / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
inline void bgc_complex_divide_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient)
inline int bgc_complex_devide_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient)
{
bgc_complex_multiply_fp64(dividend, 1.0 / divisor, quotient);
const double square_modulus = bgc_complex_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return 0;
}
const double real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const double imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const double multiplier = 1.0 / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
// ============== Divide By Number ============== //
inline void bgc_complex_divide_by_number_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient)
{
bgc_complex_multiply_by_number_fp32(dividend, 1.0f / divisor, quotient);
}
inline void bgc_complex_divide_by_number_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient)
{
bgc_complex_multiply_by_number_fp64(dividend, 1.0 / divisor, quotient);
}
// ================== Average2 ================== //
@ -428,7 +490,7 @@ inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, co
// =================== Linear =================== //
inline void bgc_complex_interpolate_linearly_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation)
inline void bgc_complex_interpolate_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation)
{
const float counterphase = 1.0f - phase;
@ -436,7 +498,7 @@ inline void bgc_complex_interpolate_linearly_fp32(const BgcComplexFP32* number1,
interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase;
}
inline void bgc_complex_interpolate_linearly_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation)
inline void bgc_complex_interpolate_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation)
{
const double counterphase = 1.0 - phase;
@ -444,54 +506,6 @@ inline void bgc_complex_interpolate_linearly_fp64(const BgcComplexFP64* number1,
interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase;
}
// ================== Minimal =================== //
inline void bgc_complex_minimize_fp32(const BgcComplexFP32* number, BgcComplexFP32* minimal)
{
if (number->real < minimal->real) {
minimal->real = number->real;
}
if (number->imaginary < minimal->imaginary) {
minimal->imaginary = number->imaginary;
}
}
inline void bgc_complex_minimize_fp64(const BgcComplexFP64* number, BgcComplexFP64* minimal)
{
if (number->real < minimal->real) {
minimal->real = number->real;
}
if (number->imaginary < minimal->imaginary) {
minimal->imaginary = number->imaginary;
}
}
// ================== Maximal =================== //
inline void bgc_complex_maximize_fp32(const BgcComplexFP32* number, BgcComplexFP32* maximal)
{
if (number->real > maximal->real) {
maximal->real = number->real;
}
if (number->imaginary > maximal->imaginary) {
maximal->imaginary = number->imaginary;
}
}
inline void bgc_complex_maximize_fp64(const BgcComplexFP64* number, BgcComplexFP64* maximal)
{
if (number->real > maximal->real) {
maximal->real = number->real;
}
if (number->imaginary > maximal->imaginary) {
maximal->imaginary = number->imaginary;
}
}
// ================== Are Close ================= //
inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2)
@ -525,7 +539,7 @@ inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcCo
return square_distance <= BGC_SQUARE_EPSYLON_FP64;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
return square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus2;
}
#endif

View file

@ -25,8 +25,17 @@ extern inline void bgc_cotes_number_swap_fp64(BgcCotesNumberFP64* number1, BgcCo
extern inline void bgc_cotes_number_convert_fp64_to_fp32(const BgcCotesNumberFP64* source, BgcCotesNumberFP32* destination);
extern inline void bgc_cotes_number_convert_fp32_to_fp64(const BgcCotesNumberFP32* source, BgcCotesNumberFP64* destination);
extern inline void bgc_cotes_number_invert_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* inverted);
extern inline void bgc_cotes_number_invert_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* inverted);
extern inline void bgc_cotes_number_make_opposite_fp32(BgcCotesNumberFP32* number);
extern inline void bgc_cotes_number_make_opposite_fp64(BgcCotesNumberFP64* number);
extern inline void bgc_cotes_number_get_opposite_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* opposite);
extern inline void bgc_cotes_number_get_opposite_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* opposite);
extern inline void bgc_cotes_number_invert_fp32(BgcCotesNumberFP32* number);
extern inline void bgc_cotes_number_invert_fp64(BgcCotesNumberFP64* number);
extern inline void bgc_cotes_number_get_inverse_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* inverse);
extern inline void bgc_cotes_number_get_inverse_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* inverse);
extern inline void bgc_cotes_number_get_exponation_fp32(const BgcCotesNumberFP32* base, const float exponent, BgcCotesNumberFP32* power);
extern inline void bgc_cotes_number_get_exponation_fp64(const BgcCotesNumberFP64* base, const double exponent, BgcCotesNumberFP64* power);
@ -52,34 +61,34 @@ extern inline void bgc_cotes_number_turn_vector_back_fp64(const BgcCotesNumberFP
extern inline int bgc_cotes_number_are_close_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2);
extern inline int bgc_cotes_number_are_close_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2);
void _bgc_cotes_number_normalize_fp32(const float square_modulus, _BgcTwinCotesNumberFP32* twin)
void _bgc_cotes_number_normalize_fp32(const float square_modulus, BgcCotesNumberFP32* number)
{
// (square_modulus != square_modulus) is true when square_modulus is NaN
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
twin->cos = 1.0f;
twin->sin = 0.0f;
number->_cos = 1.0f;
number->_sin = 0.0f;
return;
}
const float multiplier = sqrtf(1.0f / square_modulus);
twin->cos *= multiplier;
twin->sin *= multiplier;
number->_cos *= multiplier;
number->_sin *= multiplier;
}
void _bgc_cotes_number_normalize_fp64(const double square_modulus, _BgcTwinCotesNumberFP64* twin)
void _bgc_cotes_number_normalize_fp64(const double square_modulus, BgcCotesNumberFP64* number)
{
// (square_modulus != square_modulus) is true when square_modulus is NaN
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
twin->cos = 1.0;
twin->sin = 0.0;
number->_cos = 1.0;
number->_sin = 0.0;
return;
}
const double multiplier = sqrt(1.0 / square_modulus);
twin->cos *= multiplier;
twin->sin *= multiplier;
number->_cos *= multiplier;
number->_sin *= multiplier;
}

View file

@ -12,24 +12,14 @@
typedef struct
{
const float cos, sin;
float _cos, _sin;
} BgcCotesNumberFP32;
typedef struct
{
const double cos, sin;
double _cos, _sin;
} BgcCotesNumberFP64;
// ================= Dark Twins ================= //
typedef struct {
float cos, sin;
} _BgcTwinCotesNumberFP32;
typedef struct {
double cos, sin;
} _BgcTwinCotesNumberFP64;
// ================= Constants ================== //
extern const BgcCotesNumberFP32 BGC_IDLE_COTES_NUMBER_FP32;
@ -39,37 +29,31 @@ extern const BgcCotesNumberFP64 BGC_IDLE_COTES_NUMBER_FP64;
inline void bgc_cotes_number_reset_fp32(BgcCotesNumberFP32* number)
{
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)number;
twin->cos = 1.0f;
twin->sin = 0.0f;
number->_cos = 1.0f;
number->_sin = 0.0f;
}
inline void bgc_cotes_number_reset_fp64(BgcCotesNumberFP64* number)
{
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)number;
twin->cos = 1.0;
twin->sin = 0.0;
number->_cos = 1.0;
number->_sin = 0.0;
}
// ==================== Set ===================== //
void _bgc_cotes_number_normalize_fp32(const float square_modulus, _BgcTwinCotesNumberFP32* twin);
void _bgc_cotes_number_normalize_fp32(const float square_modulus, BgcCotesNumberFP32* twin);
void _bgc_cotes_number_normalize_fp64(const double square_modulus, _BgcTwinCotesNumberFP64* twin);
void _bgc_cotes_number_normalize_fp64(const double square_modulus, BgcCotesNumberFP64* twin);
inline void bgc_cotes_number_set_values_fp32(const float x1, const float x2, BgcCotesNumberFP32* number)
{
const float square_modulus = x1 * x1 + x2 * x2;
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)number;
twin->cos = x1;
twin->sin = x2;
number->_cos = x1;
number->_sin = x2;
if (!bgc_is_sqare_unit_fp32(square_modulus)) {
_bgc_cotes_number_normalize_fp32(square_modulus, twin);
_bgc_cotes_number_normalize_fp32(square_modulus, number);
}
}
@ -77,13 +61,11 @@ inline void bgc_cotes_number_set_values_fp64(const double x1, const double x2, B
{
const double square_modulus = x1 * x1 + x2 * x2;
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)number;
twin->cos = x1;
twin->sin = x2;
number->_cos = x1;
number->_sin = x2;
if (!bgc_is_sqare_unit_fp64(square_modulus)) {
_bgc_cotes_number_normalize_fp64(square_modulus, twin);
_bgc_cotes_number_normalize_fp64(square_modulus, number);
}
}
@ -93,168 +75,148 @@ inline void bgc_cotes_number_set_turn_fp32(const float angle, const BgcAngleUnit
{
const float radians = bgc_angle_to_radians_fp32(angle, unit);
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)number;
twin->cos = cosf(radians);
twin->sin = sinf(radians);
number->_cos = cosf(radians);
number->_sin = sinf(radians);
}
inline void bgc_cotes_number_set_turn_fp64(const double angle, const BgcAngleUnitEnum unit, BgcCotesNumberFP64* number)
{
const double radians = bgc_angle_to_radians_fp64(angle, unit);
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)number;
twin->cos = cos(radians);
twin->sin = sin(radians);
number->_cos = cos(radians);
number->_sin = sin(radians);
}
// =================== Angle =================== //
inline float bgc_cotes_number_get_angle_fp32(const BgcCotesNumberFP32* number, const BgcAngleUnitEnum unit)
{
if (number->cos >= 1.0f - BGC_EPSYLON_FP32) {
return 0.0f;
}
if (number->cos <= -1.0f + BGC_EPSYLON_FP32) {
return bgc_angle_get_half_circle_fp32(unit);
}
if (number->sin >= 1.0f - BGC_EPSYLON_FP32) {
return bgc_angle_get_quater_circle_fp32(unit);
}
if (number->sin <= -1.0f + BGC_EPSYLON_FP32) {
return 0.75f * bgc_angle_get_full_circle_fp32(unit);
}
return bgc_radians_to_units_fp32(atan2f(number->sin, number->cos), unit);
return bgc_radians_to_units_fp32(atan2f(number->_sin, number->_cos), unit);
}
inline double bgc_cotes_number_get_angle_fp64(const BgcCotesNumberFP64* number, const BgcAngleUnitEnum unit)
{
if (number->cos >= 1.0 - BGC_EPSYLON_FP64) {
return 0.0;
}
if (number->cos <= -1.0 + BGC_EPSYLON_FP64) {
return bgc_angle_get_half_circle_fp64(unit);
}
if (number->sin >= 1.0 - BGC_EPSYLON_FP64) {
return bgc_angle_get_quater_circle_fp64(unit);
}
if (number->sin <= -1.0 + BGC_EPSYLON_FP64) {
return 0.75 * bgc_angle_get_full_circle_fp64(unit);
}
return bgc_radians_to_units_fp64(atan2(number->sin, number->cos), unit);
return bgc_radians_to_units_fp64(atan2(number->_sin, number->_cos), unit);
}
// ==================== Copy ==================== //
inline void bgc_cotes_number_copy_fp32(const BgcCotesNumberFP32* source, BgcCotesNumberFP32* destination)
{
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)destination;
twin->cos = source->cos;
twin->sin = source->sin;
destination->_cos = source->_cos;
destination->_sin = source->_sin;
}
inline void bgc_cotes_number_copy_fp64(const BgcCotesNumberFP64* source, BgcCotesNumberFP64* destination)
{
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)destination;
twin->cos = source->cos;
twin->sin = source->sin;
destination->_cos = source->_cos;
destination->_sin = source->_sin;
}
// ==================== Swap ==================== //
inline void bgc_cotes_number_swap_fp32(BgcCotesNumberFP32* number1, BgcCotesNumberFP32* number2)
{
const float cos = number1->cos;
const float sin = number1->sin;
const float cos = number1->_cos;
const float sin = number1->_sin;
_BgcTwinCotesNumberFP32* twin1 = (_BgcTwinCotesNumberFP32*)number1;
number1->_cos = number2->_cos;
number1->_sin = number2->_sin;
twin1->cos = number2->cos;
twin1->sin = number2->sin;
_BgcTwinCotesNumberFP32* twin2 = (_BgcTwinCotesNumberFP32*)number2;
twin2->cos = cos;
twin2->sin = sin;
number2->_cos = cos;
number2->_sin = sin;
}
inline void bgc_cotes_number_swap_fp64(BgcCotesNumberFP64* number1, BgcCotesNumberFP64* number2)
{
const double cos = number1->cos;
const double sin = number1->sin;
const double cos = number1->_cos;
const double sin = number1->_sin;
_BgcTwinCotesNumberFP64* twin1 = (_BgcTwinCotesNumberFP64*)number1;
number1->_cos = number2->_cos;
number1->_sin = number2->_sin;
twin1->cos = number2->cos;
twin1->sin = number2->sin;
_BgcTwinCotesNumberFP64* twin2 = (_BgcTwinCotesNumberFP64*)number2;
twin2->cos = cos;
twin2->sin = sin;
number2->_cos = cos;
number2->_sin = sin;
}
// ================== Convert =================== //
inline void bgc_cotes_number_convert_fp64_to_fp32(const BgcCotesNumberFP64* source, BgcCotesNumberFP32* destination)
{
bgc_cotes_number_set_values_fp32((float)source->cos, (float)source->sin, destination);
bgc_cotes_number_set_values_fp32((float)source->_cos, (float)source->_sin, destination);
}
inline void bgc_cotes_number_convert_fp32_to_fp64(const BgcCotesNumberFP32* source, BgcCotesNumberFP64* destination)
{
bgc_cotes_number_set_values_fp64((double)source->cos, (double)source->sin, destination);
bgc_cotes_number_set_values_fp64((double)source->_cos, (double)source->_sin, destination);
}
// ================== Negative ================== //
inline void bgc_cotes_number_make_opposite_fp32(BgcCotesNumberFP32* number)
{
number->_cos = -number->_cos;
number->_sin = -number->_sin;
}
inline void bgc_cotes_number_make_opposite_fp64(BgcCotesNumberFP64* number)
{
number->_cos = -number->_cos;
number->_sin = -number->_sin;
}
inline void bgc_cotes_number_get_opposite_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* opposite)
{
opposite->_cos = -number->_cos;
opposite->_sin = -number->_sin;
}
inline void bgc_cotes_number_get_opposite_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* opposite)
{
opposite->_cos = -number->_cos;
opposite->_sin = -number->_sin;
}
// =================== Invert =================== //
inline void bgc_cotes_number_invert_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* inverted)
inline void bgc_cotes_number_invert_fp32(BgcCotesNumberFP32* number)
{
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)inverted;
twin->cos = number->cos;
twin->sin = -number->sin;
number->_sin = -number->_sin;
}
inline void bgc_cotes_number_invert_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* inverted)
inline void bgc_cotes_number_invert_fp64(BgcCotesNumberFP64* number)
{
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)inverted;
number->_sin = -number->_sin;
}
twin->cos = number->cos;
twin->sin = -number->sin;
inline void bgc_cotes_number_get_inverse_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* inverse)
{
inverse->_cos = number->_cos;
inverse->_sin = -number->_sin;
}
inline void bgc_cotes_number_get_inverse_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* inverse)
{
inverse->_cos = number->_cos;
inverse->_sin = -number->_sin;
}
// ================= Exponation ================= //
inline void bgc_cotes_number_get_exponation_fp32(const BgcCotesNumberFP32* base, const float exponent, BgcCotesNumberFP32* power)
{
const float power_angle = exponent * atan2f(base->sin, base->cos);
const float power_angle = exponent * atan2f(base->_sin, base->_cos);
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)power;
twin->cos = cosf(power_angle);
twin->sin = sinf(power_angle);
power->_cos = cosf(power_angle);
power->_sin = sinf(power_angle);
}
inline void bgc_cotes_number_get_exponation_fp64(const BgcCotesNumberFP64* base, const double exponent, BgcCotesNumberFP64* power)
{
const double power_angle = exponent * atan2(base->sin, base->cos);
const double power_angle = exponent * atan2(base->_sin, base->_cos);
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)power;
twin->cos = cos(power_angle);
twin->sin = sin(power_angle);
power->_cos = cos(power_angle);
power->_sin = sin(power_angle);
}
// ================ Combination ================= //
@ -262,8 +224,8 @@ inline void bgc_cotes_number_get_exponation_fp64(const BgcCotesNumberFP64* base,
inline void bgc_cotes_number_combine_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2, BgcCotesNumberFP32* result)
{
bgc_cotes_number_set_values_fp32(
number1->cos * number2->cos - number1->sin * number2->sin,
number1->cos * number2->sin + number1->sin * number2->cos,
number1->_cos * number2->_cos - number1->_sin * number2->_sin,
number1->_cos * number2->_sin + number1->_sin * number2->_cos,
result
);
}
@ -271,8 +233,8 @@ inline void bgc_cotes_number_combine_fp32(const BgcCotesNumberFP32* number1, con
inline void bgc_cotes_number_combine_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2, BgcCotesNumberFP64* result)
{
bgc_cotes_number_set_values_fp64(
number1->cos * number2->cos - number1->sin * number2->sin,
number1->cos * number2->sin + number1->sin * number2->cos,
number1->_cos * number2->_cos - number1->_sin * number2->_sin,
number1->_cos * number2->_sin + number1->_sin * number2->_cos,
result
);
}
@ -282,8 +244,8 @@ inline void bgc_cotes_number_combine_fp64(const BgcCotesNumberFP64* number1, con
inline void bgc_cotes_number_exclude_fp32(const BgcCotesNumberFP32* base, const BgcCotesNumberFP32* excludant, BgcCotesNumberFP32* difference)
{
bgc_cotes_number_set_values_fp32(
base->cos * excludant->cos + base->sin * excludant->sin,
base->sin * excludant->cos - base->cos * excludant->sin,
base->_cos * excludant->_cos + base->_sin * excludant->_sin,
base->_sin * excludant->_cos - base->_cos * excludant->_sin,
difference
);
}
@ -291,8 +253,8 @@ inline void bgc_cotes_number_exclude_fp32(const BgcCotesNumberFP32* base, const
inline void bgc_cotes_number_exclude_fp64(const BgcCotesNumberFP64* base, const BgcCotesNumberFP64* excludant, BgcCotesNumberFP64* difference)
{
bgc_cotes_number_set_values_fp64(
base->cos * excludant->cos + base->sin * excludant->sin,
base->sin * excludant->cos - base->cos * excludant->sin,
base->_cos * excludant->_cos + base->_sin * excludant->_sin,
base->_sin * excludant->_cos - base->_cos * excludant->_sin,
difference
);
}
@ -301,44 +263,44 @@ inline void bgc_cotes_number_exclude_fp64(const BgcCotesNumberFP64* base, const
inline void bgc_cotes_number_get_rotation_matrix_fp32(const BgcCotesNumberFP32* number, BgcMatrix2x2FP32* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = -number->sin;
matrix->r2c1 = number->sin;
matrix->r2c2 = number->cos;
matrix->r1c1 = number->_cos;
matrix->r1c2 = -number->_sin;
matrix->r2c1 = number->_sin;
matrix->r2c2 = number->_cos;
}
inline void bgc_cotes_number_get_rotation_matrix_fp64(const BgcCotesNumberFP64* number, BgcMatrix2x2FP64* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = -number->sin;
matrix->r2c1 = number->sin;
matrix->r2c2 = number->cos;
matrix->r1c1 = number->_cos;
matrix->r1c2 = -number->_sin;
matrix->r2c1 = number->_sin;
matrix->r2c2 = number->_cos;
}
// ============== Reverse Matrix ================ //
inline void bgc_cotes_number_get_reverse_matrix_fp32(const BgcCotesNumberFP32* number, BgcMatrix2x2FP32* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = number->sin;
matrix->r2c1 = -number->sin;
matrix->r2c2 = number->cos;
matrix->r1c1 = number->_cos;
matrix->r1c2 = number->_sin;
matrix->r2c1 = -number->_sin;
matrix->r2c2 = number->_cos;
}
inline void bgc_cotes_number_get_reverse_matrix_fp64(const BgcCotesNumberFP64* number, BgcMatrix2x2FP64* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = number->sin;
matrix->r2c1 = -number->sin;
matrix->r2c2 = number->cos;
matrix->r1c1 = number->_cos;
matrix->r1c2 = number->_sin;
matrix->r2c1 = -number->_sin;
matrix->r2c2 = number->_cos;
}
// ================ Turn Vector ================= //
inline void bgc_cotes_number_turn_vector_fp32(const BgcCotesNumberFP32* number, const BgcVector2FP32* vector, BgcVector2FP32* result)
{
const float x1 = number->cos * vector->x1 - number->sin * vector->x2;
const float x2 = number->sin * vector->x1 + number->cos * vector->x2;
const float x1 = number->_cos * vector->x1 - number->_sin * vector->x2;
const float x2 = number->_sin * vector->x1 + number->_cos * vector->x2;
result->x1 = x1;
result->x2 = x2;
@ -346,8 +308,8 @@ inline void bgc_cotes_number_turn_vector_fp32(const BgcCotesNumberFP32* number,
inline void bgc_cotes_number_turn_vector_fp64(const BgcCotesNumberFP64* number, const BgcVector2FP64* vector, BgcVector2FP64* result)
{
const double x1 = number->cos * vector->x1 - number->sin * vector->x2;
const double x2 = number->sin * vector->x1 + number->cos * vector->x2;
const double x1 = number->_cos * vector->x1 - number->_sin * vector->x2;
const double x2 = number->_sin * vector->x1 + number->_cos * vector->x2;
result->x1 = x1;
result->x2 = x2;
@ -357,8 +319,8 @@ inline void bgc_cotes_number_turn_vector_fp64(const BgcCotesNumberFP64* number,
inline void bgc_cotes_number_turn_vector_back_fp32(const BgcCotesNumberFP32* number, const BgcVector2FP32* vector, BgcVector2FP32* result)
{
const float x1 = number->sin * vector->x2 + number->cos * vector->x1;
const float x2 = number->cos * vector->x2 - number->sin * vector->x1;
const float x1 = number->_sin * vector->x2 + number->_cos * vector->x1;
const float x2 = number->_cos * vector->x2 - number->_sin * vector->x1;
result->x1 = x1;
result->x2 = x2;
@ -366,8 +328,8 @@ inline void bgc_cotes_number_turn_vector_back_fp32(const BgcCotesNumberFP32* num
inline void bgc_cotes_number_turn_vector_back_fp64(const BgcCotesNumberFP64* number, const BgcVector2FP64* vector, BgcVector2FP64* result)
{
const double x1 = number->sin * vector->x2 + number->cos * vector->x1;
const double x2 = number->cos * vector->x2 - number->sin * vector->x1;
const double x1 = number->_sin * vector->x2 + number->_cos * vector->x1;
const double x2 = number->_cos * vector->x2 - number->_sin * vector->x1;
result->x1 = x1;
result->x2 = x2;
@ -377,16 +339,16 @@ inline void bgc_cotes_number_turn_vector_back_fp64(const BgcCotesNumberFP64* num
inline int bgc_cotes_number_are_close_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2)
{
const float d_cos = number1->cos - number2->cos;
const float d_sin = number1->sin - number2->sin;
const float d_cos = number1->_cos - number2->_cos;
const float d_sin = number1->_sin - number2->_sin;
return d_cos * d_cos + d_sin * d_sin <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_cotes_number_are_close_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2)
{
const double d_cos = number1->cos - number2->cos;
const double d_sin = number1->sin - number2->sin;
const double d_cos = number1->_cos - number2->_cos;
const double d_sin = number1->_sin - number2->_sin;
return d_cos * d_cos + d_sin * d_sin <= BGC_SQUARE_EPSYLON_FP64;
}

View file

@ -274,22 +274,6 @@ inline int bgc_matrix3x3_is_singular_fp64(const BgcMatrix3x3FP64* matrix)
// ================ Is Rotation ================= //
inline int bgc_matrix3x3_is_rotation_fp32(const BgcMatrix3x3FP32* matrix)
{
if (!bgc_is_unit_fp32(bgc_matrix3x3_get_determinant_fp32(matrix))) {
return 0;
}
BgcMatrix3x3FP32 transposed, product;
bgc_matrix3x3_transpose_fp32(matrix, &transposed);
bgc_matrix_product_3x3_at_3x3_fp32(matrix, &transposed, &product);
return bgc_is_unit_fp32(product.r1c1) && bgc_is_zero_fp32(product.r1c2) && bgc_is_zero_fp32(product.r1c3)
&& bgc_is_zero_fp32(product.r2c1) && bgc_is_unit_fp32(product.r2c2) && bgc_is_zero_fp32(product.r2c3)
&& bgc_is_zero_fp32(product.r3c1) && bgc_is_zero_fp32(product.r3c2) && bgc_is_unit_fp32(product.r3c3);
}
inline int bgc_matrix3x3_is_rotation_fp32a(const BgcMatrix3x3FP32* matrix)
{
if (!bgc_is_unit_fp32(bgc_matrix3x3_get_determinant_fp32(matrix))) {

View file

@ -4,8 +4,8 @@
extern inline void bgc_quaternion_reset_fp32(BgcQuaternionFP32* quaternion);
extern inline void bgc_quaternion_reset_fp64(BgcQuaternionFP64* quaternion);
extern inline void bgc_quaternion_set_to_identity_fp32(BgcQuaternionFP32* quaternion);
extern inline void bgc_quaternion_set_to_identity_fp64(BgcQuaternionFP64* quaternion);
extern inline void bgc_quaternion_make_unit_fp32(BgcQuaternionFP32* quaternion);
extern inline void bgc_quaternion_make_unit_fp64(BgcQuaternionFP64* quaternion);
extern inline void bgc_quaternion_set_values_fp32(const float s0, const float x1, const float x2, const float x3, BgcQuaternionFP32* quaternion);
extern inline void bgc_quaternion_set_values_fp64(const double s0, const double x1, const double x2, const double x3, BgcQuaternionFP64* quaternion);
@ -31,21 +31,6 @@ extern inline void bgc_quaternion_swap_fp64(BgcQuaternionFP64* quarternion1, Bgc
extern inline void bgc_quaternion_convert_fp64_to_fp32(const BgcQuaternionFP64* source, BgcQuaternionFP32* destination);
extern inline void bgc_quaternion_convert_fp32_to_fp64(const BgcQuaternionFP32* source, BgcQuaternionFP64* destination);
extern inline void bgc_quaternion_conjugate_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* conjugate);
extern inline void bgc_quaternion_conjugate_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* conjugate);
extern inline int bgc_quaternion_invert_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* inverted);
extern inline int bgc_quaternion_invert_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* inverted);
extern inline int bgc_quaternion_normalize_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* normalized);
extern inline int bgc_quaternion_normalize_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* normalized);
extern inline void bgc_quaternion_get_product_fp32(const BgcQuaternionFP32* left, const BgcQuaternionFP32* right, BgcQuaternionFP32* product);
extern inline void bgc_quaternion_get_product_fp64(const BgcQuaternionFP64* left, const BgcQuaternionFP64* right, BgcQuaternionFP64* product);
extern inline int bgc_quaternion_get_ratio_fp32(const BgcQuaternionFP32* divident, const BgcQuaternionFP32* divisor, BgcQuaternionFP32* quotient);
extern inline int bgc_quaternion_get_ratio_fp64(const BgcQuaternionFP64* divident, const BgcQuaternionFP64* divisor, BgcQuaternionFP64* quotient);
extern inline void bgc_quaternion_add_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2, BgcQuaternionFP32* sum);
extern inline void bgc_quaternion_add_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2, BgcQuaternionFP64* sum);
@ -55,17 +40,50 @@ extern inline void bgc_quaternion_add_scaled_fp64(const BgcQuaternionFP64* basic
extern inline void bgc_quaternion_subtract_fp32(const BgcQuaternionFP32* minuend, const BgcQuaternionFP32* subtrahend, BgcQuaternionFP32* difference);
extern inline void bgc_quaternion_subtract_fp64(const BgcQuaternionFP64* minuend, const BgcQuaternionFP64* subtrahend, BgcQuaternionFP64* difference);
extern inline void bgc_quaternion_subtract_scaled_fp32(const BgcQuaternionFP32* basic_quaternion, const BgcQuaternionFP32* scalable_quaternion, const float scale, BgcQuaternionFP32* difference);
extern inline void bgc_quaternion_subtract_scaled_fp64(const BgcQuaternionFP64* basic_quaternion, const BgcQuaternionFP64* scalable_quaternion, const double scale, BgcQuaternionFP64* difference);
extern inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* left, const BgcQuaternionFP32* right, BgcQuaternionFP32* product);
extern inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* left, const BgcQuaternionFP64* right, BgcQuaternionFP64* product);
extern inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* multiplicand, const float multipier, BgcQuaternionFP32* product);
extern inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* multiplicand, const double multipier, BgcQuaternionFP64* product);
extern inline void bgc_quaternion_multiply_by_number_fp32(const BgcQuaternionFP32* multiplicand, const float multipier, BgcQuaternionFP32* product);
extern inline void bgc_quaternion_multiply_by_number_fp64(const BgcQuaternionFP64* multiplicand, const double multipier, BgcQuaternionFP64* product);
extern inline void bgc_quaternion_divide_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient);
extern inline void bgc_quaternion_divide_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient);
extern inline int bgc_quaternion_divide_fp32(const BgcQuaternionFP32* divident, const BgcQuaternionFP32* divisor, BgcQuaternionFP32* quotient);
extern inline int bgc_quaternion_divide_fp64(const BgcQuaternionFP64* divident, const BgcQuaternionFP64* divisor, BgcQuaternionFP64* quotient);
extern inline void bgc_quaternion_interpolate_linearly_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, const float phase, BgcQuaternionFP32* interpolation);
extern inline void bgc_quaternion_interpolate_linearly_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, const double phase, BgcQuaternionFP64* interpolation);
extern inline void bgc_quaternion_divide_by_number_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient);
extern inline void bgc_quaternion_divide_by_number_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient);
extern inline void bgc_quaternion_get_mean_of_two_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, BgcQuaternionFP32* mean);
extern inline void bgc_quaternion_get_mean_of_two_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, BgcQuaternionFP64* mean);
extern inline void bgc_quaternion_get_mean_of_three_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, const BgcQuaternionFP32* vector3, BgcQuaternionFP32* mean);
extern inline void bgc_quaternion_get_mean_of_three_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, const BgcQuaternionFP64* vector3, BgcQuaternionFP64* mean);
extern inline void bgc_quaternion_interpolate_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, const float phase, BgcQuaternionFP32* interpolation);
extern inline void bgc_quaternion_interpolate_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, const double phase, BgcQuaternionFP64* interpolation);
extern inline void bgc_quaternion_conjugate_fp32(BgcQuaternionFP32* quaternion);
extern inline void bgc_quaternion_conjugate_fp64(BgcQuaternionFP64* quaternion);
extern inline void bgc_quaternion_get_conjugate_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* conjugate);
extern inline void bgc_quaternion_get_conjugate_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* conjugate);
extern inline void bgc_quaternion_make_opposite_fp32(BgcQuaternionFP32* quaternion);
extern inline void bgc_quaternion_make_opposite_fp64(BgcQuaternionFP64* quaternion);
extern inline void bgc_quaternion_get_opposite_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* opposite);
extern inline void bgc_quaternion_get_opposite_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* opposite);
extern inline int bgc_quaternion_invert_fp32(BgcQuaternionFP32* quaternion);
extern inline int bgc_quaternion_invert_fp64(BgcQuaternionFP64* quaternion);
extern inline int bgc_quaternion_get_inverse_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* inverse);
extern inline int bgc_quaternion_get_inverse_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* inverse);
extern inline int bgc_quaternion_normalize_fp32(BgcQuaternionFP32* quaternion);
extern inline int bgc_quaternion_normalize_fp64(BgcQuaternionFP64* quaternion);
extern inline int bgc_quaternion_get_normalized_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* normalized);
extern inline int bgc_quaternion_get_normalized_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* normalized);
extern inline int bgc_quaternion_get_rotation_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation);
extern inline int bgc_quaternion_get_rotation_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation);
@ -73,8 +91,8 @@ extern inline int bgc_quaternion_get_rotation_matrix_fp64(const BgcQuaternionFP6
extern inline int bgc_quaternion_get_reverse_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* reverse);
extern inline int bgc_quaternion_get_reverse_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* reverse);
extern inline int bgc_quaternion_get_both_matrixes_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse);
extern inline int bgc_quaternion_get_both_matrixes_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse);
extern inline int bgc_quaternion_get_both_matrices_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse);
extern inline int bgc_quaternion_get_both_matrices_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse);
extern inline int bgc_quaternion_are_close_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2);
extern inline int bgc_quaternion_are_close_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2);

View file

@ -33,9 +33,9 @@ inline void bgc_quaternion_reset_fp64(BgcQuaternionFP64 * quaternion)
quaternion->x3 = 0.0;
}
// ================== Set Unit ================== //
// ================= Make Unit ================== //
inline void bgc_quaternion_set_to_identity_fp32(BgcQuaternionFP32 * quaternion)
inline void bgc_quaternion_make_unit_fp32(BgcQuaternionFP32 * quaternion)
{
quaternion->s0 = 1.0f;
quaternion->x1 = 0.0f;
@ -43,7 +43,7 @@ inline void bgc_quaternion_set_to_identity_fp32(BgcQuaternionFP32 * quaternion)
quaternion->x3 = 0.0f;
}
inline void bgc_quaternion_set_to_identity_fp64(BgcQuaternionFP64 * quaternion)
inline void bgc_quaternion_make_unit_fp64(BgcQuaternionFP64 * quaternion)
{
quaternion->s0 = 1.0;
quaternion->x1 = 0.0;
@ -191,186 +191,6 @@ inline void bgc_quaternion_convert_fp32_to_fp64(const BgcQuaternionFP32* source,
destination->x3 = source->x3;
}
// ================= Conjugate ================== //
inline void bgc_quaternion_conjugate_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* conjugate)
{
conjugate->s0 = quaternion->s0;
conjugate->x1 = -quaternion->x1;
conjugate->x2 = -quaternion->x2;
conjugate->x3 = -quaternion->x3;
}
inline void bgc_quaternion_conjugate_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* conjugate)
{
conjugate->s0 = quaternion->s0;
conjugate->x1 = -quaternion->x1;
conjugate->x2 = -quaternion->x2;
conjugate->x3 = -quaternion->x3;
}
// =================== Invert =================== //
inline int bgc_quaternion_invert_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* inverted)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = 1.0f / square_modulus;
inverted->s0 = quaternion->s0 * multiplicand;
inverted->x1 = -quaternion->x1 * multiplicand;
inverted->x2 = -quaternion->x2 * multiplicand;
inverted->x3 = -quaternion->x3 * multiplicand;
return 1;
}
inline int bgc_quaternion_invert_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* inverted)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = 1.0 / square_modulus;
inverted->s0 = quaternion->s0 * multiplicand;
inverted->x1 = -quaternion->x1 * multiplicand;
inverted->x2 = -quaternion->x2 * multiplicand;
inverted->x3 = -quaternion->x3 * multiplicand;
return 1;
}
// ================= Normalize ================== //
inline int bgc_quaternion_normalize_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* normalized)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
bgc_quaternion_copy_fp32(quaternion, normalized);
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplier = sqrtf(1.0f / square_modulus);
normalized->s0 = quaternion->s0 * multiplier;
normalized->x1 = quaternion->x1 * multiplier;
normalized->x2 = quaternion->x2 * multiplier;
normalized->x3 = quaternion->x3 * multiplier;
return 1;
}
inline int bgc_quaternion_normalize_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* normalized)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
bgc_quaternion_copy_fp64(quaternion, normalized);
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplier = sqrt(1.0 / square_modulus);
normalized->s0 *= multiplier;
normalized->x1 *= multiplier;
normalized->x2 *= multiplier;
normalized->x3 *= multiplier;
return 1;
}
// ================ Get Product ================= //
inline void bgc_quaternion_get_product_fp32(const BgcQuaternionFP32* left, const BgcQuaternionFP32* right, BgcQuaternionFP32* product)
{
const float s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const float x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const float x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const float x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
inline void bgc_quaternion_get_product_fp64(const BgcQuaternionFP64* left, const BgcQuaternionFP64* right, BgcQuaternionFP64* product)
{
const double s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const double x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const double x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const double x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
// ================= Get Ratio ================== //
inline int bgc_quaternion_get_ratio_fp32(const BgcQuaternionFP32* divident, const BgcQuaternionFP32* divisor, BgcQuaternionFP32* quotient)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3);
const float x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3);
const float x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1);
const float x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2);
const float multiplicand = 1.0f / square_modulus;
quotient->s0 = s0 * multiplicand;
quotient->x1 = x1 * multiplicand;
quotient->x2 = x2 * multiplicand;
quotient->x3 = x3 * multiplicand;
return 1;
}
inline int bgc_quaternion_get_ratio_fp64(const BgcQuaternionFP64* divident, const BgcQuaternionFP64* divisor, BgcQuaternionFP64* quotient)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3);
const double x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3);
const double x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1);
const double x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2);
const double multiplicand = 1.0 / square_modulus;
quotient->s0 = s0 * multiplicand;
quotient->x1 = x1 * multiplicand;
quotient->x2 = x2 * multiplicand;
quotient->x3 = x3 * multiplicand;
return 1;
}
// ==================== Add ===================== //
inline void bgc_quaternion_add_fp32(const BgcQuaternionFP32 * quaternion1, const BgcQuaternionFP32 * quaternion2, BgcQuaternionFP32 * sum)
@ -425,27 +245,35 @@ inline void bgc_quaternion_subtract_fp64(const BgcQuaternionFP64 * minuend, cons
difference->x3 = minuend->x3 - subtrahend->x3;
}
// ============== Subtract scaled =============== //
inline void bgc_quaternion_subtract_scaled_fp32(const BgcQuaternionFP32 * basic_quaternion, const BgcQuaternionFP32 * scalable_quaternion, const float scale, BgcQuaternionFP32 * difference)
{
difference->s0 = basic_quaternion->s0 - scalable_quaternion->s0 * scale;
difference->x1 = basic_quaternion->x1 - scalable_quaternion->x1 * scale;
difference->x2 = basic_quaternion->x2 - scalable_quaternion->x2 * scale;
difference->x3 = basic_quaternion->x3 - scalable_quaternion->x3 * scale;
}
inline void bgc_quaternion_subtract_scaled_fp64(const BgcQuaternionFP64 * basic_quaternion, const BgcQuaternionFP64 * scalable_quaternion, const double scale, BgcQuaternionFP64 * difference)
{
difference->s0 = basic_quaternion->s0 - scalable_quaternion->s0 * scale;
difference->x1 = basic_quaternion->x1 - scalable_quaternion->x1 * scale;
difference->x2 = basic_quaternion->x2 - scalable_quaternion->x2 * scale;
difference->x3 = basic_quaternion->x3 - scalable_quaternion->x3 * scale;
}
// ================== Multiply ================== //
inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* multiplicand, const float multipier, BgcQuaternionFP32* product)
inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* left, const BgcQuaternionFP32* right, BgcQuaternionFP32* product)
{
const float s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const float x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const float x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const float x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* left, const BgcQuaternionFP64* right, BgcQuaternionFP64* product)
{
const double s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const double x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const double x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const double x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
inline void bgc_quaternion_multiply_by_number_fp32(const BgcQuaternionFP32* multiplicand, const float multipier, BgcQuaternionFP32* product)
{
product->s0 = multiplicand->s0 * multipier;
product->x1 = multiplicand->x1 * multipier;
@ -453,7 +281,7 @@ inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* multiplicand,
product->x3 = multiplicand->x3 * multipier;
}
inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* multiplicand, const double multipier, BgcQuaternionFP64* product)
inline void bgc_quaternion_multiply_by_number_fp64(const BgcQuaternionFP64* multiplicand, const double multipier, BgcQuaternionFP64* product)
{
product->s0 = multiplicand->s0 * multipier;
product->x1 = multiplicand->x1 * multipier;
@ -463,19 +291,101 @@ inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* multiplicand,
// =================== Divide =================== //
inline void bgc_quaternion_divide_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient)
inline int bgc_quaternion_divide_fp32(const BgcQuaternionFP32* divident, const BgcQuaternionFP32* divisor, BgcQuaternionFP32* quotient)
{
bgc_quaternion_multiply_fp32(dividend, 1.0f / divisor, quotient);
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3);
const float x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3);
const float x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1);
const float x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2);
const float multiplicand = 1.0f / square_modulus;
quotient->s0 = s0 * multiplicand;
quotient->x1 = x1 * multiplicand;
quotient->x2 = x2 * multiplicand;
quotient->x3 = x3 * multiplicand;
return 1;
}
inline void bgc_quaternion_divide_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient)
inline int bgc_quaternion_divide_fp64(const BgcQuaternionFP64* divident, const BgcQuaternionFP64* divisor, BgcQuaternionFP64* quotient)
{
bgc_quaternion_multiply_fp64(dividend, 1.0 / divisor, quotient);
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3);
const double x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3);
const double x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1);
const double x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2);
const double multiplicand = 1.0 / square_modulus;
quotient->s0 = s0 * multiplicand;
quotient->x1 = x1 * multiplicand;
quotient->x2 = x2 * multiplicand;
quotient->x3 = x3 * multiplicand;
return 1;
}
inline void bgc_quaternion_divide_by_number_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient)
{
bgc_quaternion_multiply_by_number_fp32(dividend, 1.0f / divisor, quotient);
}
inline void bgc_quaternion_divide_by_number_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient)
{
bgc_quaternion_multiply_by_number_fp64(dividend, 1.0 / divisor, quotient);
}
// ================ Mean of Two ================= //
inline void bgc_quaternion_get_mean_of_two_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, BgcQuaternionFP32* mean)
{
mean->s0 = (vector1->s0 + vector2->s0) * 0.5f;
mean->x1 = (vector1->x1 + vector2->x1) * 0.5f;
mean->x2 = (vector1->x2 + vector2->x2) * 0.5f;
mean->x3 = (vector1->x3 + vector2->x3) * 0.5f;
}
inline void bgc_quaternion_get_mean_of_two_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, BgcQuaternionFP64* mean)
{
mean->s0 = (vector1->s0 + vector2->s0) * 0.5f;
mean->x1 = (vector1->x1 + vector2->x1) * 0.5f;
mean->x2 = (vector1->x2 + vector2->x2) * 0.5f;
mean->x3 = (vector1->x3 + vector2->x3) * 0.5f;
}
// =============== Mean of Three ================ //
inline void bgc_quaternion_get_mean_of_three_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, const BgcQuaternionFP32* vector3, BgcQuaternionFP32* mean)
{
mean->s0 = (vector1->s0 + vector2->s0 + vector3->s0) * BGC_ONE_THIRD_FP32;
mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_ONE_THIRD_FP32;
mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_ONE_THIRD_FP32;
mean->x3 = (vector1->x3 + vector2->x3 + vector3->x3) * BGC_ONE_THIRD_FP32;
}
inline void bgc_quaternion_get_mean_of_three_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, const BgcQuaternionFP64* vector3, BgcQuaternionFP64* mean)
{
mean->s0 = (vector1->s0 + vector2->s0 + vector3->s0) * BGC_ONE_THIRD_FP64;
mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_ONE_THIRD_FP64;
mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_ONE_THIRD_FP64;
mean->x3 = (vector1->x3 + vector2->x3 + vector3->x3) * BGC_ONE_THIRD_FP64;
}
// ============ Linear Interpolation ============ //
inline void bgc_quaternion_interpolate_linearly_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2, const float phase, BgcQuaternionFP32* interpolation)
inline void bgc_quaternion_interpolate_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2, const float phase, BgcQuaternionFP32* interpolation)
{
const float counterphase = 1.0f - phase;
@ -485,7 +395,7 @@ inline void bgc_quaternion_interpolate_linearly_fp32(const BgcQuaternionFP32* qu
interpolation->x3 = quaternion1->x3 * counterphase + quaternion2->x3 * phase;
}
inline void bgc_quaternion_interpolate_linearly_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2, const double phase, BgcQuaternionFP64* interpolation)
inline void bgc_quaternion_interpolate_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2, const double phase, BgcQuaternionFP64* interpolation)
{
const double counterphase = 1.0 - phase;
@ -495,6 +405,202 @@ inline void bgc_quaternion_interpolate_linearly_fp64(const BgcQuaternionFP64* qu
interpolation->x3 = quaternion1->x3 * counterphase + quaternion2->x3 * phase;
}
// ================= Conjugate ================== //
inline void bgc_quaternion_conjugate_fp32(BgcQuaternionFP32* quaternion)
{
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
inline void bgc_quaternion_conjugate_fp64(BgcQuaternionFP64* quaternion)
{
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
inline void bgc_quaternion_get_conjugate_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* conjugate)
{
conjugate->s0 = quaternion->s0;
conjugate->x1 = -quaternion->x1;
conjugate->x2 = -quaternion->x2;
conjugate->x3 = -quaternion->x3;
}
inline void bgc_quaternion_get_conjugate_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* conjugate)
{
conjugate->s0 = quaternion->s0;
conjugate->x1 = -quaternion->x1;
conjugate->x2 = -quaternion->x2;
conjugate->x3 = -quaternion->x3;
}
// ================== Negative ================== //
inline void bgc_quaternion_make_opposite_fp32(BgcQuaternionFP32* quaternion)
{
quaternion->s0 = -quaternion->s0;
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
inline void bgc_quaternion_make_opposite_fp64(BgcQuaternionFP64* quaternion)
{
quaternion->s0 = -quaternion->s0;
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
inline void bgc_quaternion_get_opposite_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* opposite)
{
opposite->s0 = -quaternion->s0;
opposite->x1 = -quaternion->x1;
opposite->x2 = -quaternion->x2;
opposite->x3 = -quaternion->x3;
}
inline void bgc_quaternion_get_opposite_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* opposite)
{
opposite->s0 = -quaternion->s0;
opposite->x1 = -quaternion->x1;
opposite->x2 = -quaternion->x2;
opposite->x3 = -quaternion->x3;
}
// =================== Invert =================== //
inline int bgc_quaternion_get_inverse_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* inverse)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = 1.0f / square_modulus;
inverse->s0 = quaternion->s0 * multiplicand;
inverse->x1 = -quaternion->x1 * multiplicand;
inverse->x2 = -quaternion->x2 * multiplicand;
inverse->x3 = -quaternion->x3 * multiplicand;
return 1;
}
inline int bgc_quaternion_get_inverse_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* inverse)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = 1.0 / square_modulus;
inverse->s0 = quaternion->s0 * multiplicand;
inverse->x1 = -quaternion->x1 * multiplicand;
inverse->x2 = -quaternion->x2 * multiplicand;
inverse->x3 = -quaternion->x3 * multiplicand;
return 1;
}
inline int bgc_quaternion_invert_fp32(BgcQuaternionFP32* quaternion)
{
return bgc_quaternion_get_inverse_fp32(quaternion, quaternion);
}
inline int bgc_quaternion_invert_fp64(BgcQuaternionFP64* quaternion)
{
return bgc_quaternion_get_inverse_fp64(quaternion, quaternion);
}
// ================= Normalize ================== //
inline int bgc_quaternion_normalize_fp32(BgcQuaternionFP32* quaternion)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplier = sqrtf(1.0f / square_modulus);
quaternion->s0 *= multiplier;
quaternion->x1 *= multiplier;
quaternion->x2 *= multiplier;
quaternion->x3 *= multiplier;
return 1;
}
inline int bgc_quaternion_normalize_fp64(BgcQuaternionFP64* quaternion)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplier = sqrt(1.0 / square_modulus);
quaternion->s0 *= multiplier;
quaternion->x1 *= multiplier;
quaternion->x2 *= multiplier;
quaternion->x3 *= multiplier;
return 1;
}
inline int bgc_quaternion_get_normalized_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* normalized)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
bgc_quaternion_copy_fp32(quaternion, normalized);
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
bgc_quaternion_reset_fp32(normalized);
return 0;
}
bgc_quaternion_multiply_by_number_fp32(quaternion, sqrtf(1.0f / square_modulus), normalized);
return 1;
}
inline int bgc_quaternion_get_normalized_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* normalized)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
bgc_quaternion_copy_fp64(quaternion, normalized);
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
bgc_quaternion_reset_fp64(normalized);
return 0;
}
bgc_quaternion_multiply_by_number_fp64(quaternion, sqrt(1.0 / square_modulus), normalized);
return 1;
}
// =============== Get Exponation =============== //
int bgc_quaternion_get_exponation_fp32(const BgcQuaternionFP32* base, const float exponent, BgcQuaternionFP32* power);
@ -514,6 +620,7 @@ inline int bgc_quaternion_get_rotation_matrix_fp32(const BgcQuaternionFP32* quat
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp32(rotation);
return 0;
}
@ -554,6 +661,7 @@ inline int bgc_quaternion_get_rotation_matrix_fp64(const BgcQuaternionFP64* quat
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp64(rotation);
return 0;
}
@ -596,6 +704,7 @@ inline int bgc_quaternion_get_reverse_matrix_fp32(const BgcQuaternionFP32* quate
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp32(reverse);
return 0;
}
@ -636,6 +745,7 @@ inline int bgc_quaternion_get_reverse_matrix_fp64(const BgcQuaternionFP64* quate
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp64(reverse);
return 0;
}
@ -667,7 +777,7 @@ inline int bgc_quaternion_get_reverse_matrix_fp64(const BgcQuaternionFP64* quate
// ============= Get Both Matrixes ============== //
inline int bgc_quaternion_get_both_matrixes_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse)
inline int bgc_quaternion_get_both_matrices_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse)
{
if (bgc_quaternion_get_reverse_matrix_fp32(quaternion, reverse)) {
bgc_matrix3x3_transpose_fp32(reverse, rotation);
@ -677,7 +787,7 @@ inline int bgc_quaternion_get_both_matrixes_fp32(const BgcQuaternionFP32* quater
return 0;
}
inline int bgc_quaternion_get_both_matrixes_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse)
inline int bgc_quaternion_get_both_matrices_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse)
{
if (bgc_quaternion_get_reverse_matrix_fp64(quaternion, reverse)) {
bgc_matrix3x3_transpose_fp64(reverse, rotation);

View file

@ -72,9 +72,7 @@ inline void bgc_rotation3_set_values_fp64(const double x1, const double x2, cons
inline void bgc_rotation3_set_with_axis_fp32(const BgcVector3FP32* axis, const float angle, const BgcAngleUnitEnum unit, BgcRotation3FP32* rotation)
{
bgc_vector3_copy_fp32(axis, &rotation->axis);
if (bgc_vector3_normalize_fp32(&rotation->axis)) {
if (bgc_vector3_get_normalized_fp32(axis, &rotation->axis)) {
rotation->radians = bgc_angle_to_radians_fp32(angle, unit);
}
else {
@ -84,9 +82,7 @@ inline void bgc_rotation3_set_with_axis_fp32(const BgcVector3FP32* axis, const f
inline void bgc_rotation3_set_with_axis_fp64(const BgcVector3FP64* axis, const double angle, const BgcAngleUnitEnum unit, BgcRotation3FP64* rotation)
{
bgc_vector3_copy_fp64(axis, &rotation->axis);
if (bgc_vector3_normalize_fp64(&rotation->axis)) {
if (bgc_vector3_get_normalized_fp64(axis, &rotation->axis)) {
rotation->radians = bgc_angle_to_radians_fp64(angle, unit);
}
else {

View file

@ -14,7 +14,7 @@ extern inline void bgc_slerp_get_turn_for_phase_fp64(const BgcSlerpFP64* slerp,
void bgc_slerp_make_fp32(const BgcVersorFP32* start, const BgcVersorFP32* augment, BgcSlerpFP32* slerp)
{
const float square_vector = augment->x1 * augment->x1 + augment->x2 * augment->x2 + augment->x3 * augment->x3;
const float square_vector = augment->_x1 * augment->_x1 + augment->_x2 * augment->_x2 + augment->_x3 * augment->_x3;
if (square_vector != square_vector) {
bgc_slerp_reset_fp32(slerp);
@ -22,10 +22,10 @@ void bgc_slerp_make_fp32(const BgcVersorFP32* start, const BgcVersorFP32* augmen
}
if (square_vector <= BGC_SQUARE_EPSYLON_FP32) {
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_cos_weight = start->_s0;
slerp->x1_cos_weight = start->_x1;
slerp->x2_cos_weight = start->_x2;
slerp->x3_cos_weight = start->_x3;
slerp->s0_sin_weight = 0.0f;
slerp->x1_sin_weight = 0.0f;
@ -38,24 +38,24 @@ void bgc_slerp_make_fp32(const BgcVersorFP32* start, const BgcVersorFP32* augmen
const float vector_modulus = sqrtf(square_vector);
slerp->radians = atan2f(vector_modulus, augment->s0);
slerp->radians = atan2f(vector_modulus, augment->_s0);
const float multiplier = 1.0f / vector_modulus;
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_cos_weight = start->_s0;
slerp->x1_cos_weight = start->_x1;
slerp->x2_cos_weight = start->_x2;
slerp->x3_cos_weight = start->_x3;
slerp->s0_sin_weight = -multiplier * (augment->x1 * start->x1 + augment->x2 * start->x2 + augment->x3 * start->x3);
slerp->x1_sin_weight = multiplier * (augment->x1 * start->s0 + augment->x2 * start->x3 - augment->x3 * start->x2);
slerp->x2_sin_weight = multiplier * (augment->x2 * start->s0 - augment->x1 * start->x3 + augment->x3 * start->x1);
slerp->x3_sin_weight = multiplier * (augment->x3 * start->s0 - augment->x2 * start->x1 + augment->x1 * start->x2);
slerp->s0_sin_weight = -multiplier * (augment->_x1 * start->_x1 + augment->_x2 * start->_x2 + augment->_x3 * start->_x3);
slerp->x1_sin_weight = multiplier * (augment->_x1 * start->_s0 + augment->_x2 * start->_x3 - augment->_x3 * start->_x2);
slerp->x2_sin_weight = multiplier * (augment->_x2 * start->_s0 - augment->_x1 * start->_x3 + augment->_x3 * start->_x1);
slerp->x3_sin_weight = multiplier * (augment->_x3 * start->_s0 - augment->_x2 * start->_x1 + augment->_x1 * start->_x2);
}
void bgc_slerp_make_fp64(const BgcVersorFP64* start, const BgcVersorFP64* augment, BgcSlerpFP64* slerp)
{
const double square_vector = augment->x1 * augment->x1 + augment->x2 * augment->x2 + augment->x3 * augment->x3;
const double square_vector = augment->_x1 * augment->_x1 + augment->_x2 * augment->_x2 + augment->_x3 * augment->_x3;
if (square_vector != square_vector) {
bgc_slerp_reset_fp64(slerp);
@ -63,10 +63,10 @@ void bgc_slerp_make_fp64(const BgcVersorFP64* start, const BgcVersorFP64* augmen
}
if (square_vector <= BGC_SQUARE_EPSYLON_FP64) {
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_cos_weight = start->_s0;
slerp->x1_cos_weight = start->_x1;
slerp->x2_cos_weight = start->_x2;
slerp->x3_cos_weight = start->_x3;
slerp->s0_sin_weight = 0.0;
slerp->x1_sin_weight = 0.0;
@ -79,17 +79,17 @@ void bgc_slerp_make_fp64(const BgcVersorFP64* start, const BgcVersorFP64* augmen
const double vector_modulus = sqrt(square_vector);
slerp->radians = atan2(vector_modulus, augment->s0);
slerp->radians = atan2(vector_modulus, augment->_s0);
const double multiplier = 1.0 / vector_modulus;
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_cos_weight = start->_s0;
slerp->x1_cos_weight = start->_x1;
slerp->x2_cos_weight = start->_x2;
slerp->x3_cos_weight = start->_x3;
slerp->s0_sin_weight = -multiplier * (augment->x1 * start->x1 + augment->x2 * start->x2 + augment->x3 * start->x3);
slerp->x1_sin_weight = multiplier * (augment->x1 * start->s0 + augment->x2 * start->x3 - augment->x3 * start->x2);
slerp->x2_sin_weight = multiplier * (augment->x2 * start->s0 - augment->x1 * start->x3 + augment->x3 * start->x1);
slerp->x3_sin_weight = multiplier * (augment->x3 * start->s0 - augment->x2 * start->x1 + augment->x1 * start->x2);
slerp->s0_sin_weight = -multiplier * (augment->_x1 * start->_x1 + augment->_x2 * start->_x2 + augment->_x3 * start->_x3);
slerp->x1_sin_weight = multiplier * (augment->_x1 * start->_s0 + augment->_x2 * start->_x3 - augment->_x3 * start->_x2);
slerp->x2_sin_weight = multiplier * (augment->_x2 * start->_s0 - augment->_x1 * start->_x3 + augment->_x3 * start->_x1);
slerp->x3_sin_weight = multiplier * (augment->_x3 * start->_s0 - augment->_x2 * start->_x1 + augment->_x1 * start->_x2);
}

View file

@ -80,7 +80,7 @@ inline void bgc_slerp_make_shortened_fp32(const BgcVersorFP32* start, const BgcV
BgcVersorFP32 augment;
bgc_versor_exclude_fp32(end, start, &augment);
bgc_versor_shorten_fp32(&augment, &augment);
bgc_versor_shorten_fp32(&augment);
bgc_slerp_make_fp32(start, &augment, slerp);
}
@ -90,7 +90,7 @@ inline void bgc_slerp_make_shortened_fp64(const BgcVersorFP64* start, const BgcV
BgcVersorFP64 augment;
bgc_versor_exclude_fp64(end, start, &augment);
bgc_versor_shorten_fp64(&augment, &augment);
bgc_versor_shorten_fp64(&augment);
bgc_slerp_make_fp64(start, &augment, slerp);
}

16
basic-geometry/types.h Normal file
View file

@ -0,0 +1,16 @@
#ifndef _BGC_TYPES_H_
#define _BGC_TYPES_H_
// ================== Complex =================== //
typedef struct
{
float real, imaginary;
} BgcComplexFP32;
typedef struct
{
double real, imaginary;
} BgcComplexFP64;
#endif

View file

@ -1,6 +1,6 @@
#include "utilities.h"
extern inline int bgc_is_correct_direction(const int direction);
extern inline int bgc_is_correct_axis(const int axis);
extern inline int bgc_is_zero_fp32(const float square_value);
extern inline int bgc_is_zero_fp64(const double square_value);

View file

@ -32,15 +32,25 @@
#define BGC_SUCCESS 0
#define BGC_FAILED -1
#define BGC_DIRECTION_X1 1
#define BGC_DIRECTION_X2 2
#define BGC_DIRECTION_X3 3
#define BGC_ATTITUDE_ANY 0
#define BGC_ATTITUDE_ZERO 1
#define BGC_ATTITUDE_ORTHOGONAL 2
#define BGC_ATTITUDE_CO_DIRECTIONAL 3
#define BGC_ATTITUDE_COUNTER_DIRECTIONAL 4
inline int bgc_is_correct_direction(const int direction)
#define BGC_AXIS_X1 1
#define BGC_AXIS_X2 2
#define BGC_AXIS_X3 3
#define BGC_AXIS_REVERSE_X1 -1
#define BGC_AXIS_REVERSE_X2 -2
#define BGC_AXIS_REVERSE_X3 -3
inline int bgc_is_correct_axis(const int axis)
{
return direction == BGC_DIRECTION_X1 || direction == -BGC_DIRECTION_X1
|| direction == BGC_DIRECTION_X2 || direction == -BGC_DIRECTION_X2
|| direction == BGC_DIRECTION_X3 || direction == -BGC_DIRECTION_X3;
return axis == BGC_AXIS_X1 || axis == BGC_AXIS_REVERSE_X1
|| axis == BGC_AXIS_X2 || axis == BGC_AXIS_REVERSE_X2
|| axis == BGC_AXIS_X3 || axis == BGC_AXIS_REVERSE_X3;
}
inline int bgc_is_zero_fp32(const float value)

View file

@ -6,9 +6,6 @@ extern inline void bgc_vector2_reset_fp64(BgcVector2FP64* vector);
extern inline void bgc_vector2_set_values_fp32(const float x1, const float x2, BgcVector2FP32* destination);
extern inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVector2FP64* destination);
extern inline int bgc_vector2_get_direction_fp32(const int direction, BgcVector2FP32* vector);
extern inline int bgc_vector2_get_direction_fp64(const int direction, BgcVector2FP64* vector);
extern inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector);
extern inline double bgc_vector2_get_square_modulus_fp64(const BgcVector2FP64* vector);
@ -30,12 +27,6 @@ extern inline void bgc_vector2_swap_fp64(BgcVector2FP64* vector1, BgcVector2FP64
extern inline void bgc_vector2_convert_fp64_to_fp32(const BgcVector2FP64* source, BgcVector2FP32* destination);
extern inline void bgc_vector2_convert_fp32_to_fp64(const BgcVector2FP32* source, BgcVector2FP64* destination);
extern inline void bgc_vector2_reverse_fp32(const BgcVector2FP32* vector, BgcVector2FP32* reverse);
extern inline void bgc_vector2_reverse_fp64(const BgcVector2FP64* vector, BgcVector2FP64* reverse);
extern inline int bgc_vector2_normalize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* normalized);
extern inline int bgc_vector2_normalize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* normalized);
extern inline void bgc_vector2_add_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* sum);
extern inline void bgc_vector2_add_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* sum);
@ -45,9 +36,6 @@ extern inline void bgc_vector2_add_scaled_fp64(const BgcVector2FP64* basic_vecto
extern inline void bgc_vector2_subtract_fp32(const BgcVector2FP32* minuend, const BgcVector2FP32* subtrahend, BgcVector2FP32* difference);
extern inline void bgc_vector2_subtract_fp64(const BgcVector2FP64* minuend, const BgcVector2FP64* subtrahend, BgcVector2FP64* difference);
extern inline void bgc_vector2_subtract_scaled_fp32(const BgcVector2FP32* basic_vector, const BgcVector2FP32* scalable_vector, const float scale, BgcVector2FP32* difference);
extern inline void bgc_vector2_subtract_scaled_fp64(const BgcVector2FP64* basic_vector, const BgcVector2FP64* scalable_vector, const double scale, BgcVector2FP64* difference);
extern inline void bgc_vector2_multiply_fp32(const BgcVector2FP32* multiplicand, const float multiplier, BgcVector2FP32* product);
extern inline void bgc_vector2_multiply_fp64(const BgcVector2FP64* multiplicand, const double multiplier, BgcVector2FP64* product);
@ -60,14 +48,20 @@ extern inline void bgc_vector2_get_mean_of_two_fp64(const BgcVector2FP64* vector
extern inline void bgc_vector2_get_mean_of_three_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcVector2FP32* vector3, BgcVector2FP32* mean);
extern inline void bgc_vector2_get_mean_of_three_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcVector2FP64* vector3, BgcVector2FP64* mean);
extern inline void bgc_vector2_interpolate_linearly_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation);
extern inline void bgc_vector2_interpolate_linearly_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation);
extern inline void bgc_vector2_interpolate_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation);
extern inline void bgc_vector2_interpolate_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation);
extern inline void bgc_vector2_minimize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* minimal);
extern inline void bgc_vector2_minimize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* minimal);
extern inline void bgc_vector2_make_opposite_fp32(BgcVector2FP32* vector);
extern inline void bgc_vector2_make_opposite_fp64(BgcVector2FP64* vector);
extern inline void bgc_vector2_maximize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* maximal);
extern inline void bgc_vector2_maximize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* maximal);
extern inline void bgc_vector2_get_opposite_fp32(const BgcVector2FP32* vector, BgcVector2FP32* opposite);
extern inline void bgc_vector2_get_opposite_fp64(const BgcVector2FP64* vector, BgcVector2FP64* opposite);
extern inline int bgc_vector2_normalize_fp32(BgcVector2FP32* vector);
extern inline int bgc_vector2_normalize_fp64(BgcVector2FP64* vector);
extern inline int bgc_vector2_get_normalized_fp32(const BgcVector2FP32* vector, BgcVector2FP32* normalized);
extern inline int bgc_vector2_get_normalized_fp64(const BgcVector2FP64* vector, BgcVector2FP64* normalized);
extern inline float bgc_vector2_get_scalar_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline double bgc_vector2_get_scalar_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
@ -87,6 +81,15 @@ extern inline int bgc_vector2_are_close_enough_fp64(const BgcVector2FP64* vector
extern inline int bgc_vector2_are_close_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline int bgc_vector2_are_close_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
extern inline int bgc_vector2_are_parallel_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline int bgc_vector2_are_parallel_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
extern inline int bgc_vector2_are_orthogonal_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline int bgc_vector2_are_orthogonal_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
extern inline int bgc_vector2_get_attitude_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline int bgc_vector2_get_attitude_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
// =================== Angle ==================== //
float bgc_vector2_get_angle_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcAngleUnitEnum unit)
@ -105,11 +108,13 @@ float bgc_vector2_get_angle_fp32(const BgcVector2FP32* vector1, const BgcVector2
return 0.0f;
}
const float scalar = bgc_vector2_get_scalar_product_fp32(vector1, vector2);
const float multiplier = sqrtf(1.0f / (square_modulus1 * square_modulus2));
const float cross = bgc_vector2_get_cross_product_fp32(vector1, vector2);
const float x = bgc_vector2_get_scalar_product_fp32(vector1, vector2);
return bgc_radians_to_units_fp32(atan2f(cross >= 0 ? cross : -cross, scalar), unit);
const float y = fabsf(bgc_vector2_get_cross_product_fp32(vector1, vector2));
return bgc_radians_to_units_fp32(atan2f(y * multiplier, x * multiplier), unit);
}
double bgc_vector2_get_angle_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcAngleUnitEnum unit)
@ -128,9 +133,11 @@ double bgc_vector2_get_angle_fp64(const BgcVector2FP64* vector1, const BgcVector
return 0.0;
}
const double scalar = bgc_vector2_get_scalar_product_fp64(vector1, vector2);
const double multiplier = sqrt(1.0 / (square_modulus1 * square_modulus2));
const double cross = bgc_vector2_get_cross_product_fp64(vector1, vector2);
const double x = bgc_vector2_get_scalar_product_fp64(vector1, vector2);
return bgc_radians_to_units_fp64(atan2(cross >= 0 ? cross : -cross, scalar), unit);
const double y = bgc_vector2_get_cross_product_fp64(vector1, vector2);
return bgc_radians_to_units_fp64(atan2(y * multiplier, x * multiplier), unit);
}

View file

@ -44,62 +44,6 @@ inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVec
destination->x2 = x2;
}
// ================= Directions ================= //
inline int bgc_vector2_get_direction_fp32(const int direction, BgcVector2FP32* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0f;
vector->x2 = 0.0f;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = 1.0f;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0f;
vector->x2 = 0.0f;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = -1.0f;
return 1;
}
return 0;
}
inline int bgc_vector2_get_direction_fp64(const int direction, BgcVector2FP64* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0;
vector->x2 = 0.0;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = 1.0;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0;
vector->x2 = 0.0;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = -1.0;
return 1;
}
return 0;
}
// ================== Modulus =================== //
inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector)
@ -198,66 +142,6 @@ inline void bgc_vector2_convert_fp32_to_fp64(const BgcVector2FP32* source, BgcVe
destination->x2 = source->x2;
}
// ================== Reverse =================== //
inline void bgc_vector2_reverse_fp32(const BgcVector2FP32* vector, BgcVector2FP32* reverse)
{
reverse->x1 = -vector->x1;
reverse->x2 = -vector->x2;
}
inline void bgc_vector2_reverse_fp64(const BgcVector2FP64* vector, BgcVector2FP64* reverse)
{
reverse->x1 = -vector->x1;
reverse->x2 = -vector->x2;
}
// ================= Normalize ================== //
inline int bgc_vector2_normalize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* normalized)
{
const float square_modulus = bgc_vector2_get_square_modulus_fp32(vector);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
normalized->x1 = vector->x1;
normalized->x2 = vector->x2;
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = sqrtf(1.0f / square_modulus);
normalized->x1 = vector->x1 * multiplicand;
normalized->x2 = vector->x2 * multiplicand;
return 1;
}
inline int bgc_vector2_normalize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* normalized)
{
const double square_modulus = bgc_vector2_get_square_modulus_fp64(vector);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
normalized->x1 = vector->x1;
normalized->x2 = vector->x2;
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = sqrt(1.0 / square_modulus);
normalized->x1 = vector->x1 * multiplicand;
normalized->x2 = vector->x2 * multiplicand;
return 1;
}
// ==================== Add ===================== //
inline void bgc_vector2_add_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* sum)
@ -300,20 +184,6 @@ inline void bgc_vector2_subtract_fp64(const BgcVector2FP64* minuend, const BgcVe
difference->x2 = minuend->x2 - subtrahend->x2;
}
// ============== Subtract scaled =============== //
inline void bgc_vector2_subtract_scaled_fp32(const BgcVector2FP32* basic_vector, const BgcVector2FP32* scalable_vector, const float scale, BgcVector2FP32* difference)
{
difference->x1 = basic_vector->x1 - scalable_vector->x1 * scale;
difference->x2 = basic_vector->x2 - scalable_vector->x2 * scale;
}
inline void bgc_vector2_subtract_scaled_fp64(const BgcVector2FP64* basic_vector, const BgcVector2FP64* scalable_vector, const double scale, BgcVector2FP64* difference)
{
difference->x1 = basic_vector->x1 - scalable_vector->x1 * scale;
difference->x2 = basic_vector->x2 - scalable_vector->x2 * scale;
}
// ================== Multiply ================== //
inline void bgc_vector2_multiply_fp32(const BgcVector2FP32* multiplicand, const float multiplier, BgcVector2FP32* product)
@ -340,7 +210,7 @@ inline void bgc_vector2_divide_fp64(const BgcVector2FP64* dividend, const double
bgc_vector2_multiply_fp64(dividend, 1.0 / divisor, quotient);
}
// ================== Average2 ================== //
// ================ Mean of Two ================= //
inline void bgc_vector2_get_mean_of_two_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* mean)
{
@ -354,7 +224,7 @@ inline void bgc_vector2_get_mean_of_two_fp64(const BgcVector2FP64* vector1, cons
mean->x2 = (vector1->x2 + vector2->x2) * 0.5;
}
// ================== Average3 ================== //
// =============== Mean of Three ================ //
inline void bgc_vector2_get_mean_of_three_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcVector2FP32* vector3, BgcVector2FP32* mean)
{
@ -370,7 +240,7 @@ inline void bgc_vector2_get_mean_of_three_fp64(const BgcVector2FP64* vector1, co
// =================== Linear =================== //
inline void bgc_vector2_interpolate_linearly_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation)
inline void bgc_vector2_interpolate_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation)
{
const float counterphase = 1.0f - phase;
@ -378,7 +248,7 @@ inline void bgc_vector2_interpolate_linearly_fp32(const BgcVector2FP32* vector1,
interpolation->x2 = vector1->x2 * counterphase + vector2->x2 * phase;
}
inline void bgc_vector2_interpolate_linearly_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation)
inline void bgc_vector2_interpolate_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation)
{
const double counterphase = 1.0 - phase;
@ -386,52 +256,108 @@ inline void bgc_vector2_interpolate_linearly_fp64(const BgcVector2FP64* vector1,
interpolation->x2 = vector1->x2 * counterphase + vector2->x2 * phase;
}
// ================== Minimal =================== //
// ================== Negative ================== //
inline void bgc_vector2_minimize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* minimal)
inline void bgc_vector2_make_opposite_fp32(BgcVector2FP32* vector)
{
if (vector->x1 < minimal->x1) {
minimal->x1 = vector->x1;
}
if (vector->x2 < minimal->x2) {
minimal->x2 = vector->x2;
}
vector->x1 = -vector->x1;
vector->x2 = -vector->x2;
}
inline void bgc_vector2_minimize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* minimal)
inline void bgc_vector2_make_opposite_fp64(BgcVector2FP64* vector)
{
if (vector->x1 < minimal->x1) {
minimal->x1 = vector->x1;
}
if (vector->x2 < minimal->x2) {
minimal->x2 = vector->x2;
}
vector->x1 = -vector->x1;
vector->x2 = -vector->x2;
}
// ================== Maximal =================== //
inline void bgc_vector2_maximize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* maximal)
inline void bgc_vector2_get_opposite_fp32(const BgcVector2FP32* vector, BgcVector2FP32* opposite)
{
if (vector->x1 > maximal->x1) {
maximal->x1 = vector->x1;
}
if (vector->x2 > maximal->x2) {
maximal->x2 = vector->x2;
}
opposite->x1 = -vector->x1;
opposite->x2 = -vector->x2;
}
inline void bgc_vector2_maximize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* maximal)
inline void bgc_vector2_get_opposite_fp64(const BgcVector2FP64* vector, BgcVector2FP64* opposite)
{
if (vector->x1 > maximal->x1) {
maximal->x1 = vector->x1;
opposite->x1 = -vector->x1;
opposite->x2 = -vector->x2;
}
// ================= Normalize ================== //
inline int bgc_vector2_normalize_fp32(BgcVector2FP32* vector)
{
const float square_modulus = bgc_vector2_get_square_modulus_fp32(vector);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
return 1;
}
if (vector->x2 > maximal->x2) {
maximal->x2 = vector->x2;
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplier = sqrtf(1.0f / square_modulus);
vector->x1 *= multiplier;
vector->x2 *= multiplier;
return 1;
}
inline int bgc_vector2_normalize_fp64(BgcVector2FP64* vector)
{
const double square_modulus = bgc_vector2_get_square_modulus_fp64(vector);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplier = sqrt(1.0 / square_modulus);
vector->x1 *= multiplier;
vector->x2 *= multiplier;
return 1;
}
inline int bgc_vector2_get_normalized_fp32(const BgcVector2FP32* vector, BgcVector2FP32* normalized)
{
const float square_modulus = bgc_vector2_get_square_modulus_fp32(vector);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
bgc_vector2_copy_fp32(vector, normalized);
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
bgc_vector2_reset_fp32(normalized);
return 0;
}
bgc_vector2_multiply_fp32(vector, sqrtf(1.0f / square_modulus), normalized);
return 1;
}
inline int bgc_vector2_get_normalized_fp64(const BgcVector2FP64* vector, BgcVector2FP64* normalized)
{
const double square_modulus = bgc_vector2_get_square_modulus_fp64(vector);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
bgc_vector2_copy_fp64(vector, normalized);
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
bgc_vector2_reset_fp64(normalized);
return 0;
}
bgc_vector2_multiply_fp64(vector, sqrt(1.0 / square_modulus), normalized);
return 1;
}
// ============= Get Scalar Product ============= //
@ -468,16 +394,16 @@ double bgc_vector2_get_angle_fp64(const BgcVector2FP64* vector1, const BgcVector
inline float bgc_vector2_get_square_distance_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
{
const float dx1 = (vector1->x1 - vector2->x1);
const float dx2 = (vector1->x2 - vector2->x2);
const float dx1 = vector1->x1 - vector2->x1;
const float dx2 = vector1->x2 - vector2->x2;
return dx1 * dx1 + dx2 * dx2;
}
inline double bgc_vector2_get_square_distance_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
{
const double dx1 = (vector1->x1 - vector2->x1);
const double dx2 = (vector1->x2 - vector2->x2);
const double dx1 = vector1->x1 - vector2->x1;
const double dx2 = vector1->x2 - vector2->x2;
return dx1 * dx1 + dx2 * dx2;
}
@ -496,14 +422,14 @@ inline double bgc_vector2_get_distance_fp64(const BgcVector2FP64* vector1, const
// ============== Are Close Enough ============== //
inline int bgc_vector2_are_close_enough_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float distance)
inline int bgc_vector2_are_close_enough_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float distance_limit)
{
return bgc_vector2_get_square_distance_fp32(vector1, vector2) <= distance * distance;
return bgc_vector2_get_square_distance_fp32(vector1, vector2) <= distance_limit * distance_limit;
}
inline int bgc_vector2_are_close_enough_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double distance)
inline int bgc_vector2_are_close_enough_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double distance_limit)
{
return bgc_vector2_get_square_distance_fp64(vector1, vector2) <= distance * distance;
return bgc_vector2_get_square_distance_fp64(vector1, vector2) <= distance_limit * distance_limit;
}
// ================== Are Close ================= //
@ -531,7 +457,143 @@ inline int bgc_vector2_are_close_fp64(const BgcVector2FP64* vector1, const BgcVe
return square_distance <= BGC_SQUARE_EPSYLON_FP64;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
return square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus2;
}
// ================== Parallel ================== //
inline int bgc_vector2_are_parallel_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
{
const float square_modulus1 = bgc_vector2_get_square_modulus_fp32(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32) {
return 1;
}
const float square_modulus2 = bgc_vector2_get_square_modulus_fp32(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32) {
return 1;
}
const float cross_product = bgc_vector2_get_cross_product_fp32(vector1, vector2);
return cross_product * cross_product <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 * square_modulus2;
}
inline int bgc_vector2_are_parallel_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
{
const double square_modulus1 = bgc_vector2_get_square_modulus_fp64(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64) {
return 1;
}
const double square_modulus2 = bgc_vector2_get_square_modulus_fp64(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64) {
return 1;
}
const double cross_product = bgc_vector2_get_cross_product_fp64(vector1, vector2);
return cross_product * cross_product <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 * square_modulus2;
}
// ================= Orthogonal ================= //
inline int bgc_vector2_are_orthogonal_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
{
const float square_modulus1 = bgc_vector2_get_square_modulus_fp32(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32) {
return 1;
}
const float square_modulus2 = bgc_vector2_get_square_modulus_fp32(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32) {
return 1;
}
const float scalar_product = bgc_vector2_get_scalar_product_fp32(vector1, vector2);
return scalar_product * scalar_product <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 * square_modulus2;
}
inline int bgc_vector2_are_orthogonal_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
{
const double square_modulus1 = bgc_vector2_get_square_modulus_fp64(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64) {
return 1;
}
const double square_modulus2 = bgc_vector2_get_square_modulus_fp64(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64) {
return 1;
}
const double scalar_product = bgc_vector2_get_scalar_product_fp64(vector1, vector2);
return scalar_product * scalar_product <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 * square_modulus2;
}
// ================== Attitude ================== //
inline int bgc_vector2_get_attitude_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
{
const float square_modulus1 = bgc_vector2_get_square_modulus_fp32(vector1);
const float square_modulus2 = bgc_vector2_get_square_modulus_fp32(vector2);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32 || square_modulus2 <= BGC_SQUARE_EPSYLON_FP32) {
return BGC_ATTITUDE_ZERO;
}
const float square_limit = BGC_SQUARE_EPSYLON_FP32 * square_modulus1 * square_modulus2;
const float scalar_product = bgc_vector2_get_scalar_product_fp32(vector1, vector2);
if (scalar_product * scalar_product <= square_limit) {
return BGC_ATTITUDE_ORTHOGONAL;
}
const float cross_product = bgc_vector2_get_cross_product_fp32(vector1, vector2);
if (cross_product * cross_product > square_limit) {
return BGC_ATTITUDE_ANY;
}
return scalar_product > 0.0f ? BGC_ATTITUDE_CO_DIRECTIONAL : BGC_ATTITUDE_COUNTER_DIRECTIONAL;
}
inline int bgc_vector2_get_attitude_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
{
const double square_modulus1 = bgc_vector2_get_square_modulus_fp64(vector1);
const double square_modulus2 = bgc_vector2_get_square_modulus_fp64(vector2);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64 || square_modulus2 <= BGC_SQUARE_EPSYLON_FP64) {
return BGC_ATTITUDE_ZERO;
}
const double square_limit = BGC_SQUARE_EPSYLON_FP64 * square_modulus1 * square_modulus2;
const double scalar_product = bgc_vector2_get_scalar_product_fp64(vector1, vector2);
if (scalar_product * scalar_product <= square_limit) {
return BGC_ATTITUDE_ORTHOGONAL;
}
const double cross_product = bgc_vector2_get_cross_product_fp64(vector1, vector2);
if (cross_product * cross_product > square_limit) {
return BGC_ATTITUDE_ANY;
}
return scalar_product > 0.0 ? BGC_ATTITUDE_CO_DIRECTIONAL : BGC_ATTITUDE_COUNTER_DIRECTIONAL;
}
#endif

View file

Internal server error - Personal Git Server: Beyond coding. We Forge.

500

Internal server error

Forgejo version: 11.0.1+gitea-1.22.0

@ -6,9 +6,6 @@ extern inline void bgc_vector3_reset_fp64(BgcVector3FP64* vector);
extern inline void bgc_vector3_set_values_fp32(const float x1, const float x2, const float x3, BgcVector3FP32* destination);
extern inline void bgc_vector3_set_values_fp64(const double x1, const double x2, const double x3, BgcVector3FP64* destination);
inline int bgc_vector3_get_direction_fp32(const int direction, BgcVector3FP32* vector);
inline int bgc_vector3_get_direction_fp64(const int direction, BgcVector3FP64* vector);
extern inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector);
extern inline double bgc_vector3_get_square_modulus_fp64(const BgcVector3FP64* vector);
@ -30,15 +27,6 @@ extern inline void bgc_vector3_convert_fp32_to_fp64(const BgcVector3FP32* source
extern inline void bgc_vector3_swap_fp32(BgcVector3FP32* vector1, BgcVector3FP32* vector2);
extern inline void bgc_vector3_swap_fp64(BgcVector3FP64* vector1, BgcVector3FP64* vector2);
extern inline void bgc_vector3_reverse_fp32(const BgcVector3FP32* vector, BgcVector3FP32* reverse);
extern inline void bgc_vector3_reverse_fp64(const BgcVector3FP64* vector, BgcVector3FP64* reverse);
extern inline int bgc_vector3_normalize_fp32(BgcVector3FP32* vector);