bgc-c/basic-geometry/complex.h

545 lines
18 KiB
C

#ifndef _BGC_COMPLEX_H_
#define _BGC_COMPLEX_H_
#include "utilities.h"
#include "angle.h"
#include <math.h>
typedef struct
{
float real, imaginary;
} BgcComplexFP32;
typedef struct
{
double real, imaginary;
} BgcComplexFP64;
// =================== Reset ==================== //
inline void bgc_complex_reset_fp32(BgcComplexFP32* complex)
{
complex->real = 0.0f;
complex->imaginary = 0.0f;
}
inline void bgc_complex_reset_fp64(BgcComplexFP64* complex)
{
complex->real = 0.0;
complex->imaginary = 0.0;
}
// ==================== Set ===================== //
inline void bgc_complex_set_values_fp32(const float real, const float imaginary, BgcComplexFP32* destination)
{
destination->real = real;
destination->imaginary = imaginary;
}
inline void bgc_complex_set_values_fp64(const double real, const double imaginary, BgcComplexFP64* destination)
{
destination->real = real;
destination->imaginary = imaginary;
}
// ================== Modulus =================== //
inline float bgc_complex_get_square_modulus_fp32(const BgcComplexFP32* number)
{
return number->real * number->real + number->imaginary * number->imaginary;
}
inline double bgc_complex_get_square_modulus_fp64(const BgcComplexFP64* number)
{
return number->real * number->real + number->imaginary * number->imaginary;
}
inline float bgc_complex_get_modulus_fp32(const BgcComplexFP32* number)
{
return sqrtf(bgc_complex_get_square_modulus_fp32(number));
}
inline double bgc_complex_get_modulus_fp64(const BgcComplexFP64* number)
{
return sqrt(bgc_complex_get_square_modulus_fp64(number));
}
// ================= Comparison ================= //
inline int bgc_complex_is_zero_fp32(const BgcComplexFP32* number)
{
return bgc_complex_get_square_modulus_fp32(number) <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_complex_is_zero_fp64(const BgcComplexFP64* number)
{
return bgc_complex_get_square_modulus_fp64(number) <= BGC_SQUARE_EPSYLON_FP64;
}
inline int bgc_complex_is_unit_fp32(const BgcComplexFP32* number)
{
return bgc_is_sqare_unit_fp32(bgc_complex_get_square_modulus_fp32(number));
}
inline int bgc_complex_is_unit_fp64(const BgcComplexFP64* number)
{
return bgc_is_sqare_unit_fp64(bgc_complex_get_square_modulus_fp64(number));
}
// ==================== Copy ==================== //
inline void bgc_complex_copy_fp32(const BgcComplexFP32* source, BgcComplexFP32* destination)
{
destination->real = source->real;
destination->imaginary = source->imaginary;
}
inline void bgc_complex_copy_fp64(const BgcComplexFP64* source, BgcComplexFP64* destination)
{
destination->real = source->real;
destination->imaginary = source->imaginary;
}
// ==================== Swap ==================== //
inline void bgc_complex_swap_fp32(BgcComplexFP32* number1, BgcComplexFP32* number2)
{
const float real = number2->real;
const float imaginary = number2->imaginary;
number2->real = number1->real;
number2->imaginary = number1->imaginary;
number1->real = real;
number1->imaginary = imaginary;
}
inline void bgc_complex_swap_fp64(BgcComplexFP64* number1, BgcComplexFP64* number2)
{
const double real = number2->real;
const double imaginary = number2->imaginary;
number2->real = number1->real;
number2->imaginary = number1->imaginary;
number1->real = real;
number1->imaginary = imaginary;
}
// ================== Convert =================== //
inline void bgc_complex_convert_fp64_to_fp32(const BgcComplexFP64* source, BgcComplexFP32* destination)
{
destination->real = (float)source->real;
destination->imaginary = (float)source->imaginary;
}
inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcComplexFP64* destination)
{
destination->real = source->real;
destination->imaginary = source->imaginary;
}
// ================== Negative ================== //
inline void bgc_complex_make_opposite_fp32(BgcComplexFP32* number)
{
number->real = -number->real;
number->imaginary = -number->imaginary;
}
inline void bgc_complex_make_opposite_fp64(BgcComplexFP64* number)
{
number->real = -number->real;
number->imaginary = -number->imaginary;
}
inline void bgc_complex_get_opposite_fp32(const BgcComplexFP32* number, BgcComplexFP32* opposite)
{
opposite->real = -number->real;
opposite->imaginary = -number->imaginary;
}
inline void bgc_complex_get_opposite_fp64(const BgcComplexFP64* number, BgcComplexFP64* opposite)
{
opposite->real = -number->real;
opposite->imaginary = -number->imaginary;
}
// ================= Normalize ================== //
inline int bgc_complex_normalize_fp32(BgcComplexFP32* number)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = sqrtf(1.0f / square_modulus);
number->real *= multiplicand;
number->imaginary *= multiplicand;
return 1;
}
inline int bgc_complex_normalize_fp64(BgcComplexFP64* number)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = sqrt(1.0 / square_modulus);
number->real *= multiplicand;
number->imaginary *= multiplicand;
return 1;
}
inline int bgc_complex_get_normalized_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
normalized->real = number->real;
normalized->imaginary = number->imaginary;
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
normalized->real = 0.0f;
normalized->imaginary = 0.0f;
return 0;
}
const float multiplicand = sqrtf(1.0f / square_modulus);
normalized->real = number->real * multiplicand;
normalized->imaginary = number->imaginary * multiplicand;
return 1;
}
inline int bgc_complex_get_normalized_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
normalized->real = number->real;
normalized->imaginary = number->imaginary;
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
normalized->real = 0.0;
normalized->imaginary = 0.0;
return 0;
}
const double multiplicand = sqrt(1.0 / square_modulus);
normalized->real = number->real * multiplicand;
normalized->imaginary = number->imaginary * multiplicand;
return 1;
}
// ================= Conjugate ================== //
inline void bgc_complex_conjugate_fp32(BgcComplexFP32* number)
{
number->imaginary = -number->imaginary;
}
inline void bgc_complex_conjugate_fp64(BgcComplexFP64* number)
{
number->imaginary = -number->imaginary;
}
inline void bgc_complex_get_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate)
{
conjugate->real = number->real;
conjugate->imaginary = -number->imaginary;
}
inline void bgc_complex_get_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate)
{
conjugate->real = number->real;
conjugate->imaginary = -number->imaginary;
}
// =================== Invert =================== //
inline int bgc_complex_get_inverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverse)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = 1.0f / square_modulus;
inverse->real = number->real * multiplicand;
inverse->imaginary = -number->imaginary * multiplicand;
return 1;
}
inline int bgc_complex_get_inverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverse)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = 1.0 / square_modulus;
inverse->real = number->real * multiplicand;
inverse->imaginary = -number->imaginary * multiplicand;
return 1;
}
inline int bgc_complex_invert_fp32(BgcComplexFP32* number)
{
return bgc_complex_get_inverse_fp32(number, number);
}
inline int bgc_complex_invert_fp64(BgcComplexFP64* number)
{
return bgc_complex_get_inverse_fp64(number, number);
}
// =============== Get Exponation =============== //
void bgc_complex_get_exponation_fp32(const BgcComplexFP32* base, const float real_exponent, const float imaginary_exponent, BgcComplexFP32* power);
void bgc_complex_get_exponation_fp64(const BgcComplexFP64* base, const double real_exponent, const double imaginary_exponent, BgcComplexFP64* power);
// ==================== Add ===================== //
inline void bgc_complex_add_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* sum)
{
sum->real = number1->real + number2->real;
sum->imaginary = number1->imaginary + number2->imaginary;
}
inline void bgc_complex_add_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* sum)
{
sum->real = number1->real + number2->real;
sum->imaginary = number1->imaginary + number2->imaginary;
}
// ================= Add scaled ================= //
inline void bgc_complex_add_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* sum)
{
sum->real = basic_number->real + scalable_number->real * scale;
sum->imaginary = basic_number->imaginary + scalable_number->imaginary * scale;
}
inline void bgc_complex_add_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* sum)
{
sum->real = basic_number->real + scalable_number->real * scale;
sum->imaginary = basic_number->imaginary + scalable_number->imaginary * scale;
}
// ================== Subtract ================== //
inline void bgc_complex_subtract_fp32(const BgcComplexFP32* minuend, const BgcComplexFP32* subtrahend, BgcComplexFP32* difference)
{
difference->real = minuend->real - subtrahend->real;
difference->imaginary = minuend->imaginary - subtrahend->imaginary;
}
inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcComplexFP64* subtrahend, BgcComplexFP64* difference)
{
difference->real = minuend->real - subtrahend->real;
difference->imaginary = minuend->imaginary - subtrahend->imaginary;
}
// ================== Multiply ================== //
inline void bgc_complex_multiply_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* product)
{
const float real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const float imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
product->real = real;
product->imaginary = imaginary;
}
inline void bgc_complex_multiply_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* product)
{
const double real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const double imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
product->real = real;
product->imaginary = imaginary;
}
// ============= Multiply By Number ============= //
inline void bgc_complex_multiply_by_number_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product)
{
product->real = multiplicand->real * multiplier;
product->imaginary = multiplicand->imaginary * multiplier;
}
inline void bgc_complex_multiply_by_number_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product)
{
product->real = multiplicand->real * multiplier;
product->imaginary = multiplicand->imaginary * multiplier;
}
// =================== Divide =================== //
inline int bgc_complex_devide_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return 0;
}
const float real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const float imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const float multiplier = 1.0f / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
inline int bgc_complex_devide_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return 0;
}
const double real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const double imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const double multiplier = 1.0 / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
// ============== Divide By Number ============== //
inline void bgc_complex_divide_by_number_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient)
{
bgc_complex_multiply_by_number_fp32(dividend, 1.0f / divisor, quotient);
}
inline void bgc_complex_divide_by_number_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient)
{
bgc_complex_multiply_by_number_fp64(dividend, 1.0 / divisor, quotient);
}
// ================== Average2 ================== //
inline void bgc_complex_get_mean_of_two_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* mean)
{
mean->real = (number1->real + number2->real) * 0.5f;
mean->imaginary = (number1->imaginary + number2->imaginary) * 0.5f;
}
inline void bgc_complex_get_mean_of_two_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* mean)
{
mean->real = (number1->real + number2->real) * 0.5;
mean->imaginary = (number1->imaginary + number2->imaginary) * 0.5;
}
// ================== Average3 ================== //
inline void bgc_complex_get_mean_of_three_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const BgcComplexFP32* number3, BgcComplexFP32* mean)
{
mean->real = (number1->real + number2->real + number3->real) * BGC_ONE_THIRD_FP32;
mean->imaginary = (number1->imaginary + number2->imaginary + number3->imaginary) * BGC_ONE_THIRD_FP32;
}
inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const BgcComplexFP64* number3, BgcComplexFP64* mean)
{
mean->real = (number1->real + number2->real + number3->real) * BGC_ONE_THIRD_FP64;
mean->imaginary = (number1->imaginary + number2->imaginary + number3->imaginary) * BGC_ONE_THIRD_FP64;
}
// =================== Linear =================== //
inline void bgc_complex_interpolate_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation)
{
const float counterphase = 1.0f - phase;
interpolation->real = number1->real * counterphase + number2->real * phase;
interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase;
}
inline void bgc_complex_interpolate_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation)
{
const double counterphase = 1.0 - phase;
interpolation->real = number1->real * counterphase + number2->real * phase;
interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase;
}
// ================== Are Close ================= //
inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2)
{
const float square_modulus1 = bgc_complex_get_square_modulus_fp32(number1);
const float square_modulus2 = bgc_complex_get_square_modulus_fp32(number2);
const float d_real = number1->real - number2->real;
const float d_imaginary = number1->imaginary - number2->imaginary;
const float square_distance = d_real * d_real + d_imaginary * d_imaginary;
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32) {
return square_distance <= BGC_SQUARE_EPSYLON_FP32;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
}
inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2)
{
const double square_modulus1 = bgc_complex_get_square_modulus_fp64(number1);
const double square_modulus2 = bgc_complex_get_square_modulus_fp64(number2);
const double d_real = number1->real - number2->real;
const double d_imaginary = number1->imaginary - number2->imaginary;
const double square_distance = d_real * d_real + d_imaginary * d_imaginary;
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64) {
return square_distance <= BGC_SQUARE_EPSYLON_FP64;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus2;
}
#endif