bgc-c/basic-geometry/versor.h

659 lines
24 KiB
C

#ifndef _BGC_VERSOR_H_
#define _BGC_VERSOR_H_
#include <stdint.h>
#include "utilities.h"
#include "angle.h"
#include "vector3.h"
#include "rotation3.h"
#include "matrix3x3.h"
#include "quaternion.h"
#define BGC_SOME_TURN 1
#define BGC_ZERO_TURN 0
#define BGC_OPPOSITE -1
#define BGC_ERROR_PRIMARY_DIRECTION_UNKNOWN -3001
#define BGC_ERROR_PRIMARY_VECTOR_IS_ZERO -3002
#define BGC_ERROR_AUXILIARY_DIRECTION_UNKNOWN -3011
#define BGC_ERROR_AUXILIARY_VECTOR_IS_ZERO -3012
#define BGC_ERROR_DIRECTIONS_PARALLEL -3021
#define BGC_ERROR_VECTORS_PARALLEL -3022
// =================== Types ==================== //
typedef struct {
float _s0, _x1, _x2, _x3;
} BgcVersorFP32;
typedef struct {
double _s0, _x1, _x2, _x3;
} BgcVersorFP64;
// ================= Constants ================== //
extern const BgcVersorFP32 BGC_IDLE_VERSOR_FP32;
extern const BgcVersorFP64 BGC_IDLE_VERSOR_FP64;
// =================== Reset ==================== //
inline void bgc_versor_reset_fp32(BgcVersorFP32* versor)
{
versor->_s0 = 1.0f;
versor->_x1 = 0.0f;
versor->_x2 = 0.0f;
versor->_x3 = 0.0f;
}
inline void bgc_versor_reset_fp64(BgcVersorFP64* versor)
{
versor->_s0 = 1.0;
versor->_x1 = 0.0;
versor->_x2 = 0.0;
versor->_x3 = 0.0;
}
// ==================== Set ===================== //
void _bgc_versor_normalize_fp32(const float square_modulus, BgcVersorFP32* twin);
void _bgc_versor_normalize_fp64(const double square_modulus, BgcVersorFP64* twin);
inline void bgc_versor_set_values_fp32(const float s0, const float x1, const float x2, const float x3, BgcVersorFP32* versor)
{
versor->_s0 = s0;
versor->_x1 = x1;
versor->_x2 = x2;
versor->_x3 = x3;
const float square_modulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (!bgc_is_sqare_unit_fp32(square_modulus)) {
_bgc_versor_normalize_fp32(square_modulus, versor);
}
}
inline void bgc_versor_set_values_fp64(const double s0, const double x1, const double x2, const double x3, BgcVersorFP64* versor)
{
versor->_s0 = s0;
versor->_x1 = x1;
versor->_x2 = x2;
versor->_x3 = x3;
const double square_modulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (!bgc_is_sqare_unit_fp64(square_modulus)) {
_bgc_versor_normalize_fp64(square_modulus, versor);
}
}
// ================== Set Turn ================== //
void bgc_versor_set_turn_fp32(const float x1, const float x2, const float x3, const float angle, const BgcAngleUnitEnum unit, BgcVersorFP32* result);
void bgc_versor_set_turn_fp64(const double x1, const double x2, const double x3, const double angle, const BgcAngleUnitEnum unit, BgcVersorFP64* result);
// ================ Set Rotation ================ //
inline void bgc_versor_set_rotation_fp32(const BgcRotation3FP32* rotation, BgcVersorFP32* result)
{
bgc_versor_set_turn_fp32(rotation->axis.x1, rotation->axis.x2, rotation->axis.x3, rotation->radians, BGC_ANGLE_UNIT_RADIANS, result);
}
inline void bgc_versor_set_rotation_fp64(const BgcRotation3FP64* rotation, BgcVersorFP64* result)
{
bgc_versor_set_turn_fp64(rotation->axis.x1, rotation->axis.x2, rotation->axis.x3, rotation->radians, BGC_ANGLE_UNIT_RADIANS, result);
}
// ========= Make Direction Difference ========== //
int bgc_versor_make_direction_difference_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, BgcVersorFP32* result);
int bgc_versor_make_direction_difference_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, BgcVersorFP64* result);
// =============== Set Directions =============== //
int bgc_versor_make_basis_difference_fp32(
const BgcVector3FP32* initial_primary_direction,
const BgcVector3FP32* initial_auxiliary_direction,
const BgcVector3FP32* final_primary_direction,
const BgcVector3FP32* final_auxiliary_direction,
BgcVersorFP32* result
);
int bgc_versor_make_basis_difference_fp64(
const BgcVector3FP64* initial_primary_direction,
const BgcVector3FP64* initial_auxiliary_direction,
const BgcVector3FP64* final_primary_direction,
const BgcVector3FP64* final_auxiliary_direction,
BgcVersorFP64* result
);
// ==================== Copy ==================== //
inline void bgc_versor_copy_fp32(const BgcVersorFP32* source, BgcVersorFP32* destination)
{
destination->_s0 = source->_s0;
destination->_x1 = source->_x1;
destination->_x2 = source->_x2;
destination->_x3 = source->_x3;
}
inline void bgc_versor_copy_fp64(const BgcVersorFP64* source, BgcVersorFP64* destination)
{
destination->_s0 = source->_s0;
destination->_x1 = source->_x1;
destination->_x2 = source->_x2;
destination->_x3 = source->_x3;
}
// ==================== Swap ==================== //
inline void bgc_versor_swap_fp32(BgcVersorFP32* versor1, BgcVersorFP32* versor2)
{
const float s0 = versor1->_s0;
const float x1 = versor1->_x1;
const float x2 = versor1->_x2;
const float x3 = versor1->_x3;
versor1->_s0 = versor2->_s0;
versor1->_x1 = versor2->_x1;
versor1->_x2 = versor2->_x2;
versor1->_x3 = versor2->_x3;
versor2->_s0 = s0;
versor2->_x1 = x1;
versor2->_x2 = x2;
versor2->_x3 = x3;
}
inline void bgc_versor_swap_fp64(BgcVersorFP64* versor1, BgcVersorFP64* versor2)
{
const double s0 = versor1->_s0;
const double x1 = versor1->_x1;
const double x2 = versor1->_x2;
const double x3 = versor1->_x3;
versor1->_s0 = versor2->_s0;
versor1->_x1 = versor2->_x1;
versor1->_x2 = versor2->_x2;
versor1->_x3 = versor2->_x3;
versor2->_s0 = s0;
versor2->_x1 = x1;
versor2->_x2 = x2;
versor2->_x3 = x3;
}
// ================= Comparison ================= //
inline int bgc_versor_is_identity_fp32(const BgcVersorFP32* versor)
{
return versor->_x1 * versor->_x1 + versor->_x2 * versor->_x2 + versor->_x3 * versor->_x3 <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_versor_is_identity_fp64(const BgcVersorFP64* versor)
{
return versor->_x1 * versor->_x1 + versor->_x2 * versor->_x2 + versor->_x3 * versor->_x3 <= BGC_SQUARE_EPSYLON_FP64;
}
// ================== Convert =================== //
inline void bgc_versor_convert_fp64_to_fp32(const BgcVersorFP64* source, BgcVersorFP32* destination)
{
bgc_versor_set_values_fp32(
(float)source->_s0,
(float)source->_x1,
(float)source->_x2,
(float)source->_x3,
destination
);
}
inline void bgc_versor_convert_fp32_to_fp64(const BgcVersorFP32* source, BgcVersorFP64* destination)
{
bgc_versor_set_values_fp64(
source->_s0,
source->_x1,
source->_x2,
source->_x3,
destination
);
}
// ================== Shorten =================== //
inline void bgc_versor_shorten_fp32(BgcVersorFP32* versor)
{
if (versor->_s0 < 0.0f) {
versor->_s0 = -versor->_s0;
versor->_x1 = -versor->_x1;
versor->_x2 = -versor->_x2;
versor->_x3 = -versor->_x3;
}
}
inline void bgc_versor_shorten_fp64(BgcVersorFP64* versor)
{
if (versor->_s0 < 0.0) {
versor->_s0 = -versor->_s0;
versor->_x1 = -versor->_x1;
versor->_x2 = -versor->_x2;
versor->_x3 = -versor->_x3;
}
}
inline void bgc_versor_get_shortened_fp32(const BgcVersorFP32* versor, BgcVersorFP32* shortened)
{
if (versor->_s0 >= 0.0f) {
shortened->_s0 = versor->_s0;
shortened->_x1 = versor->_x1;
shortened->_x2 = versor->_x2;
shortened->_x3 = versor->_x3;
return;
}
shortened->_s0 = -versor->_s0;
shortened->_x1 = -versor->_x1;
shortened->_x2 = -versor->_x2;
shortened->_x3 = -versor->_x3;
}
inline void bgc_versor_get_shortened_fp64(const BgcVersorFP64* versor, BgcVersorFP64* shortened)
{
if (versor->_s0 >= 0.0) {
shortened->_s0 = versor->_s0;
shortened->_x1 = versor->_x1;
shortened->_x2 = versor->_x2;
shortened->_x3 = versor->_x3;
return;
}
shortened->_s0 = -versor->_s0;
shortened->_x1 = -versor->_x1;
shortened->_x2 = -versor->_x2;
shortened->_x3 = -versor->_x3;
}
// ================== Negative ================== //
inline void bgc_versor_make_opposite_fp32(BgcVersorFP32* versor)
{
versor->_s0 = -versor->_s0;
versor->_x1 = -versor->_x1;
versor->_x2 = -versor->_x2;
versor->_x3 = -versor->_x3;
}
inline void bgc_versor_make_opposite_fp64(BgcVersorFP64* versor)
{
versor->_s0 = -versor->_s0;
versor->_x1 = -versor->_x1;
versor->_x2 = -versor->_x2;
versor->_x3 = -versor->_x3;
}
inline void bgc_versor_get_opposite_fp32(const BgcVersorFP32* versor, BgcVersorFP32* opposite)
{
opposite->_s0 = -versor->_s0;
opposite->_x1 = -versor->_x1;
opposite->_x2 = -versor->_x2;
opposite->_x3 = -versor->_x3;
}
inline void bgc_versor_get_opposite_fp64(const BgcVersorFP64* versor, BgcVersorFP64* opposite)
{
opposite->_s0 = -versor->_s0;
opposite->_x1 = -versor->_x1;
opposite->_x2 = -versor->_x2;
opposite->_x3 = -versor->_x3;
}
// =================== Invert =================== //
inline void bgc_versor_invert_fp32(BgcVersorFP32* versor)
{
versor->_x1 = -versor->_x1;
versor->_x2 = -versor->_x2;
versor->_x3 = -versor->_x3;
}
inline void bgc_versor_invert_fp64(BgcVersorFP64* versor)
{
versor->_x1 = -versor->_x1;
versor->_x2 = -versor->_x2;
versor->_x3 = -versor->_x3;
}
inline void bgc_versor_get_inverse_fp32(const BgcVersorFP32* versor, BgcVersorFP32* inverse)
{
inverse->_s0 = versor->_s0;
inverse->_x1 = -versor->_x1;
inverse->_x2 = -versor->_x2;
inverse->_x3 = -versor->_x3;
}
inline void bgc_versor_get_inverse_fp64(const BgcVersorFP64* versor, BgcVersorFP64* inverse)
{
inverse->_s0 = versor->_s0;
inverse->_x1 = -versor->_x1;
inverse->_x2 = -versor->_x2;
inverse->_x3 = -versor->_x3;
}
// =============== Get Exponation =============== //
void bgc_versor_get_exponation_fp32(const BgcVersorFP32* base, const float exponent, BgcVersorFP32* power);
void bgc_versor_get_exponation_fp64(const BgcVersorFP64* base, const double exponent, BgcVersorFP64* power);
// ================ Combination ================= //
inline void bgc_versor_combine_fp32(const BgcVersorFP32* second, const BgcVersorFP32* first, BgcVersorFP32* result)
{
bgc_versor_set_values_fp32(
(second->_s0 * first->_s0 - second->_x1 * first->_x1) - (second->_x2 * first->_x2 + second->_x3 * first->_x3),
(second->_x1 * first->_s0 + second->_s0 * first->_x1) - (second->_x3 * first->_x2 - second->_x2 * first->_x3),
(second->_x2 * first->_s0 + second->_s0 * first->_x2) - (second->_x1 * first->_x3 - second->_x3 * first->_x1),
(second->_x3 * first->_s0 + second->_s0 * first->_x3) - (second->_x2 * first->_x1 - second->_x1 * first->_x2),
result
);
}
inline void bgc_versor_combine_fp64(const BgcVersorFP64* second, const BgcVersorFP64* first, BgcVersorFP64* result)
{
bgc_versor_set_values_fp64(
(second->_s0 * first->_s0 - second->_x1 * first->_x1) - (second->_x2 * first->_x2 + second->_x3 * first->_x3),
(second->_x1 * first->_s0 + second->_s0 * first->_x1) - (second->_x3 * first->_x2 - second->_x2 * first->_x3),
(second->_x2 * first->_s0 + second->_s0 * first->_x2) - (second->_x1 * first->_x3 - second->_x3 * first->_x1),
(second->_x3 * first->_s0 + second->_s0 * first->_x3) - (second->_x2 * first->_x1 - second->_x1 * first->_x2),
result
);
}
// ============ Combination of three ============ //
inline void bgc_versor_combine3_fp32(const BgcVersorFP32* third, const BgcVersorFP32* second, const BgcVersorFP32* first, BgcVersorFP32* result)
{
const float s0 = (second->_s0 * first->_s0 - second->_x1 * first->_x1) - (second->_x2 * first->_x2 + second->_x3 * first->_x3);
const float x1 = (second->_x1 * first->_s0 + second->_s0 * first->_x1) - (second->_x3 * first->_x2 - second->_x2 * first->_x3);
const float x2 = (second->_x2 * first->_s0 + second->_s0 * first->_x2) - (second->_x1 * first->_x3 - second->_x3 * first->_x1);
const float x3 = (second->_x3 * first->_s0 + second->_s0 * first->_x3) - (second->_x2 * first->_x1 - second->_x1 * first->_x2);
bgc_versor_set_values_fp32(
(third->_s0 * s0 - third->_x1 * x1) - (third->_x2 * x2 + third->_x3 * x3),
(third->_x1 * s0 + third->_s0 * x1) - (third->_x3 * x2 - third->_x2 * x3),
(third->_x2 * s0 + third->_s0 * x2) - (third->_x1 * x3 - third->_x3 * x1),
(third->_x3 * s0 + third->_s0 * x3) - (third->_x2 * x1 - third->_x1 * x2),
result
);
}
inline void bgc_versor_combine3_fp64(const BgcVersorFP64* third, const BgcVersorFP64* second, const BgcVersorFP64* first, BgcVersorFP64* result)
{
const double s0 = (second->_s0 * first->_s0 - second->_x1 * first->_x1) - (second->_x2 * first->_x2 + second->_x3 * first->_x3);
const double x1 = (second->_x1 * first->_s0 + second->_s0 * first->_x1) - (second->_x3 * first->_x2 - second->_x2 * first->_x3);
const double x2 = (second->_x2 * first->_s0 + second->_s0 * first->_x2) - (second->_x1 * first->_x3 - second->_x3 * first->_x1);
const double x3 = (second->_x3 * first->_s0 + second->_s0 * first->_x3) - (second->_x2 * first->_x1 - second->_x1 * first->_x2);
bgc_versor_set_values_fp64(
(third->_s0 * s0 - third->_x1 * x1) - (third->_x2 * x2 + third->_x3 * x3),
(third->_x1 * s0 + third->_s0 * x1) - (third->_x3 * x2 - third->_x2 * x3),
(third->_x2 * s0 + third->_s0 * x2) - (third->_x1 * x3 - third->_x3 * x1),
(third->_x3 * s0 + third->_s0 * x3) - (third->_x2 * x1 - third->_x1 * x2),
result
);
}
// ================= Exclusion ================== //
inline void bgc_versor_exclude_fp32(const BgcVersorFP32* base, const BgcVersorFP32* excludant, BgcVersorFP32* difference)
{
bgc_versor_set_values_fp32(
(base->_s0 * excludant->_s0 + base->_x1 * excludant->_x1) + (base->_x2 * excludant->_x2 + base->_x3 * excludant->_x3),
(base->_x1 * excludant->_s0 + base->_x3 * excludant->_x2) - (base->_s0 * excludant->_x1 + base->_x2 * excludant->_x3),
(base->_x2 * excludant->_s0 + base->_x1 * excludant->_x3) - (base->_s0 * excludant->_x2 + base->_x3 * excludant->_x1),
(base->_x3 * excludant->_s0 + base->_x2 * excludant->_x1) - (base->_s0 * excludant->_x3 + base->_x1 * excludant->_x2),
difference
);
}
inline void bgc_versor_exclude_fp64(const BgcVersorFP64* base, const BgcVersorFP64* excludant, BgcVersorFP64* difference)
{
bgc_versor_set_values_fp64(
(base->_s0 * excludant->_s0 + base->_x1 * excludant->_x1) + (base->_x2 * excludant->_x2 + base->_x3 * excludant->_x3),
(base->_x1 * excludant->_s0 + base->_x3 * excludant->_x2) - (base->_s0 * excludant->_x1 + base->_x2 * excludant->_x3),
(base->_x2 * excludant->_s0 + base->_x1 * excludant->_x3) - (base->_s0 * excludant->_x2 + base->_x3 * excludant->_x1),
(base->_x3 * excludant->_s0 + base->_x2 * excludant->_x1) - (base->_s0 * excludant->_x3 + base->_x1 * excludant->_x2),
difference
);
}
// ============ Sphere Interpolation ============ //
void bgc_versor_spherically_interpolate_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, const float phase, BgcVersorFP32* result);
void bgc_versor_spherically_interpolate_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, const double phase, BgcVersorFP64* result);
// ================ Get Rotation ================ //
void bgc_versor_get_rotation_fp32(const BgcVersorFP32* versor, BgcRotation3FP32* result);
void bgc_versor_get_rotation_fp64(const BgcVersorFP64* versor, BgcRotation3FP64* result);
// ============ Get Rotation Matrix ============= //
inline void bgc_versor_get_rotation_matrix_fp32(const BgcVersorFP32* versor, BgcMatrix3x3FP32* matrix)
{
const float s0s0 = versor->_s0 * versor->_s0;
const float x1x1 = versor->_x1 * versor->_x1;
const float x2x2 = versor->_x2 * versor->_x2;
const float x3x3 = versor->_x3 * versor->_x3;
const float s0x1 = versor->_s0 * versor->_x1;
const float s0x2 = versor->_s0 * versor->_x2;
const float s0x3 = versor->_s0 * versor->_x3;
const float x1x2 = versor->_x1 * versor->_x2;
const float x1x3 = versor->_x1 * versor->_x3;
const float x2x3 = versor->_x2 * versor->_x3;
matrix->r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix->r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix->r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix->r1c2 = 2.0f * (x1x2 - s0x3);
matrix->r2c3 = 2.0f * (x2x3 - s0x1);
matrix->r3c1 = 2.0f * (x1x3 - s0x2);
matrix->r2c1 = 2.0f * (x1x2 + s0x3);
matrix->r3c2 = 2.0f * (x2x3 + s0x1);
matrix->r1c3 = 2.0f * (x1x3 + s0x2);
}
inline void bgc_versor_get_rotation_matrix_fp64(const BgcVersorFP64* versor, BgcMatrix3x3FP64* matrix)
{
const double s0s0 = versor->_s0 * versor->_s0;
const double x1x1 = versor->_x1 * versor->_x1;
const double x2x2 = versor->_x2 * versor->_x2;
const double x3x3 = versor->_x3 * versor->_x3;
const double s0x1 = versor->_s0 * versor->_x1;
const double s0x2 = versor->_s0 * versor->_x2;
const double s0x3 = versor->_s0 * versor->_x3;
const double x1x2 = versor->_x1 * versor->_x2;
const double x1x3 = versor->_x1 * versor->_x3;
const double x2x3 = versor->_x2 * versor->_x3;
matrix->r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix->r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix->r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix->r1c2 = 2.0 * (x1x2 - s0x3);
matrix->r2c3 = 2.0 * (x2x3 - s0x1);
matrix->r3c1 = 2.0 * (x1x3 - s0x2);
matrix->r2c1 = 2.0 * (x1x2 + s0x3);
matrix->r3c2 = 2.0 * (x2x3 + s0x1);
matrix->r1c3 = 2.0 * (x1x3 + s0x2);
}
// ============= Get Reverse Matrix ============= //
inline void bgc_versor_get_reverse_matrix_fp32(const BgcVersorFP32* versor, BgcMatrix3x3FP32* matrix)
{
const float s0s0 = versor->_s0 * versor->_s0;
const float x1x1 = versor->_x1 * versor->_x1;
const float x2x2 = versor->_x2 * versor->_x2;
const float x3x3 = versor->_x3 * versor->_x3;
const float s0x1 = versor->_s0 * versor->_x1;
const float s0x2 = versor->_s0 * versor->_x2;
const float s0x3 = versor->_s0 * versor->_x3;
const float x1x2 = versor->_x1 * versor->_x2;
const float x1x3 = versor->_x1 * versor->_x3;
const float x2x3 = versor->_x2 * versor->_x3;
matrix->r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix->r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix->r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix->r1c2 = 2.0f * (x1x2 + s0x3);
matrix->r2c3 = 2.0f * (x2x3 + s0x1);
matrix->r3c1 = 2.0f * (x1x3 + s0x2);
matrix->r2c1 = 2.0f * (x1x2 - s0x3);
matrix->r3c2 = 2.0f * (x2x3 - s0x1);
matrix->r1c3 = 2.0f * (x1x3 - s0x2);
}
inline void bgc_versor_get_reverse_matrix_fp64(const BgcVersorFP64* versor, BgcMatrix3x3FP64* matrix)
{
const double s0s0 = versor->_s0 * versor->_s0;
const double x1x1 = versor->_x1 * versor->_x1;
const double x2x2 = versor->_x2 * versor->_x2;
const double x3x3 = versor->_x3 * versor->_x3;
const double s0x1 = versor->_s0 * versor->_x1;
const double s0x2 = versor->_s0 * versor->_x2;
const double s0x3 = versor->_s0 * versor->_x3;
const double x1x2 = versor->_x1 * versor->_x2;
const double x1x3 = versor->_x1 * versor->_x3;
const double x2x3 = versor->_x2 * versor->_x3;
matrix->r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix->r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix->r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix->r1c2 = 2.0 * (x1x2 + s0x3);
matrix->r2c3 = 2.0 * (x2x3 + s0x1);
matrix->r3c1 = 2.0 * (x1x3 + s0x2);
matrix->r2c1 = 2.0 * (x1x2 - s0x3);
matrix->r3c2 = 2.0 * (x2x3 - s0x1);
matrix->r1c3 = 2.0 * (x1x3 - s0x2);
}
// ============= Get Both Matrixes ============== //
inline void bgc_versor_get_both_matrices_fp32(const BgcVersorFP32* versor, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse)
{
bgc_versor_get_reverse_matrix_fp32(versor, reverse);
bgc_matrix3x3_transpose_fp32(reverse, rotation);
}
inline void bgc_versor_get_both_matrices_fp64(const BgcVersorFP64* versor, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse)
{
bgc_versor_get_reverse_matrix_fp64(versor, reverse);
bgc_matrix3x3_transpose_fp64(reverse, rotation);
}
// ================ Turn Vector ================= //
inline void bgc_versor_turn_vector_fp32(const BgcVersorFP32* versor, const BgcVector3FP32* vector, BgcVector3FP32* result)
{
const float tx1 = 2.0f * (versor->_x2 * vector->x3 - versor->_x3 * vector->x2);
const float tx2 = 2.0f * (versor->_x3 * vector->x1 - versor->_x1 * vector->x3);
const float tx3 = 2.0f * (versor->_x1 * vector->x2 - versor->_x2 * vector->x1);
const float x1 = (vector->x1 + tx1 * versor->_s0) + (versor->_x2 * tx3 - versor->_x3 * tx2);
const float x2 = (vector->x2 + tx2 * versor->_s0) + (versor->_x3 * tx1 - versor->_x1 * tx3);
const float x3 = (vector->x3 + tx3 * versor->_s0) + (versor->_x1 * tx2 - versor->_x2 * tx1);
result->x1 = x1;
result->x2 = x2;
result->x3 = x3;
}
inline void bgc_versor_turn_vector_fp64(const BgcVersorFP64* versor, const BgcVector3FP64* vector, BgcVector3FP64* result)
{
const double tx1 = 2.0 * (versor->_x2 * vector->x3 - versor->_x3 * vector->x2);
const double tx2 = 2.0 * (versor->_x3 * vector->x1 - versor->_x1 * vector->x3);
const double tx3 = 2.0 * (versor->_x1 * vector->x2 - versor->_x2 * vector->x1);
const double x1 = (vector->x1 + tx1 * versor->_s0) + (versor->_x2 * tx3 - versor->_x3 * tx2);
const double x2 = (vector->x2 + tx2 * versor->_s0) + (versor->_x3 * tx1 - versor->_x1 * tx3);
const double x3 = (vector->x3 + tx3 * versor->_s0) + (versor->_x1 * tx2 - versor->_x2 * tx1);
result->x1 = x1;
result->x2 = x2;
result->x3 = x3;
}
// ============== Turn Vector Back ============== //
inline void bgc_versor_turn_vector_back_fp32(const BgcVersorFP32* versor, const BgcVector3FP32* vector, BgcVector3FP32* result)
{
const float tx1 = 2.0f * (versor->_x2 * vector->x3 - versor->_x3 * vector->x2);
const float tx2 = 2.0f * (versor->_x3 * vector->x1 - versor->_x1 * vector->x3);
const float tx3 = 2.0f * (versor->_x1 * vector->x2 - versor->_x2 * vector->x1);
const float x1 = (vector->x1 - tx1 * versor->_s0) + (versor->_x2 * tx3 - versor->_x3 * tx2);
const float x2 = (vector->x2 - tx2 * versor->_s0) + (versor->_x3 * tx1 - versor->_x1 * tx3);
const float x3 = (vector->x3 - tx3 * versor->_s0) + (versor->_x1 * tx2 - versor->_x2 * tx1);
result->x1 = x1;
result->x2 = x2;
result->x3 = x3;
}
inline void bgc_versor_turn_vector_back_fp64(const BgcVersorFP64* versor, const BgcVector3FP64* vector, BgcVector3FP64* result)
{
const double tx1 = 2.0 * (versor->_x2 * vector->x3 - versor->_x3 * vector->x2);
const double tx2 = 2.0 * (versor->_x3 * vector->x1 - versor->_x1 * vector->x3);
const double tx3 = 2.0 * (versor->_x1 * vector->x2 - versor->_x2 * vector->x1);
const double x1 = (vector->x1 - tx1 * versor->_s0) + (versor->_x2 * tx3 - versor->_x3 * tx2);
const double x2 = (vector->x2 - tx2 * versor->_s0) + (versor->_x3 * tx1 - versor->_x1 * tx3);
const double x3 = (vector->x3 - tx3 * versor->_s0) + (versor->_x1 * tx2 - versor->_x2 * tx1);
result->x1 = x1;
result->x2 = x2;
result->x3 = x3;
}
// ================== Are Close ================= //
inline int bgc_versor_are_close_fp32(const BgcVersorFP32* versor1, const BgcVersorFP32* versor2)
{
const float ds0 = versor1->_s0 - versor2->_s0;
const float dx1 = versor1->_x1 - versor2->_x1;
const float dx2 = versor1->_x2 - versor2->_x2;
const float dx3 = versor1->_x3 - versor2->_x3;
return (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3) <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_versor_are_close_fp64(const BgcVersorFP64* versor1, const BgcVersorFP64* versor2)
{
const double ds0 = versor1->_s0 - versor2->_s0;
const double dx1 = versor1->_x1 - versor2->_x1;
const double dx2 = versor1->_x2 - versor2->_x2;
const double dx3 = versor1->_x3 - versor2->_x3;
return (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3) <= BGC_SQUARE_EPSYLON_FP64;
}
#endif