Compare commits

...

10 commits

50 changed files with 3990 additions and 2861 deletions

View file

@ -1,26 +1,10 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public enum AngleUnit
{

View file

@ -1,40 +1,23 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public static class FP32Angle
public static class AngleFP32
{
public static float ToRadians(float angle, AngleUnit unit)
{
if (unit == AngleUnit.DEGREES)
{
return angle * FP32Degrees.RADIANS_IN_DEGREE;
return angle * DegreeFP32.RADIANS_IN_DEGREE;
}
if (unit == AngleUnit.TURNS)
{
return angle * FP32Radians.TWO_PI;
return angle * RadianFP32.TWO_PI;
}
return angle;
@ -44,7 +27,7 @@ namespace BasicGeometry
{
if (unit == AngleUnit.RADIANS)
{
return angle * FP32Radians.DEGREES_IN_RADIAN;
return angle * RadianFP32.DEGREES_IN_RADIAN;
}
if (unit == AngleUnit.TURNS)
@ -59,12 +42,12 @@ namespace BasicGeometry
{
if (unit == AngleUnit.RADIANS)
{
return angle * FP32Radians.TURNS_IN_RADIAN;
return angle * RadianFP32.TURNS_IN_RADIAN;
}
if (unit == AngleUnit.DEGREES)
{
return angle * FP32Degrees.TURNS_IN_DEGREE;
return angle * DegreeFP32.TURNS_IN_DEGREE;
}
return angle;
@ -82,7 +65,7 @@ namespace BasicGeometry
return 1.0f;
}
return FP32Radians.TWO_PI;
return RadianFP32.TWO_PI;
}
public static float GetHalfCircle(AngleUnit unit)
@ -97,7 +80,7 @@ namespace BasicGeometry
return 0.5f;
}
return FP32Radians.PI;
return RadianFP32.PI;
}
public static float GetQuarterCircle(AngleUnit unit)
@ -112,22 +95,22 @@ namespace BasicGeometry
return 0.25f;
}
return FP32Radians.HALF_OF_PI;
return RadianFP32.HALF_OF_PI;
}
public static float Normalize(float angle, AngleUnit unit, AngleRange range)
{
if (unit == AngleUnit.DEGREES)
{
return FP32Degrees.Normalize(angle, range);
return DegreeFP32.Normalize(angle, range);
}
if (unit == AngleUnit.TURNS)
{
return FP32Turns.Normalize(angle, range);
return TurnFP32.Normalize(angle, range);
}
return FP32Radians.Normalize(angle, range);
return RadianFP32.Normalize(angle, range);
}
}
}

View file

@ -1,40 +1,23 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public static class FP64Angle
public static class AngleFP64
{
public static double ToRadians(double angle, AngleUnit unit)
{
if (unit == AngleUnit.DEGREES)
{
return angle * FP64Degrees.RADIANS_IN_DEGREE;
return angle * DegreeFP64.RADIANS_IN_DEGREE;
}
if (unit == AngleUnit.TURNS)
{
return angle * FP64Radians.TWO_PI;
return angle * RadianFP64.TWO_PI;
}
return angle;
@ -44,7 +27,7 @@ namespace BasicGeometry
{
if (unit == AngleUnit.RADIANS)
{
return angle * FP64Radians.DEGREES_IN_RADIAN;
return angle * RadianFP64.DEGREES_IN_RADIAN;
}
if (unit == AngleUnit.TURNS)
@ -59,12 +42,12 @@ namespace BasicGeometry
{
if (unit == AngleUnit.RADIANS)
{
return angle * FP64Radians.TURNS_IN_RADIAN;
return angle * RadianFP64.TURNS_IN_RADIAN;
}
if (unit == AngleUnit.DEGREES)
{
return angle * FP64Degrees.TURNS_IN_DEGREE;
return angle * DegreeFP64.TURNS_IN_DEGREE;
}
return angle;
@ -82,7 +65,7 @@ namespace BasicGeometry
return 1.0;
}
return FP64Radians.TWO_PI;
return RadianFP64.TWO_PI;
}
public static double GetHalfCircle(AngleUnit unit)
@ -97,7 +80,7 @@ namespace BasicGeometry
return 0.5;
}
return FP64Radians.PI;
return RadianFP64.PI;
}
public static double GetQuarterCircle(AngleUnit unit)
@ -112,22 +95,22 @@ namespace BasicGeometry
return 0.25;
}
return FP64Radians.HALF_OF_PI;
return RadianFP64.HALF_OF_PI;
}
public static double Normalize(double angle, AngleUnit unit, AngleRange range)
{
if (unit == AngleUnit.DEGREES)
{
return FP64Degrees.Normalize(angle, range);
return DegreeFP64.Normalize(angle, range);
}
if (unit == AngleUnit.TURNS)
{
return FP64Turns.Normalize(angle, range);
return TurnFP64.Normalize(angle, range);
}
return FP64Radians.Normalize(angle, range);
return RadianFP64.Normalize(angle, range);
}
}
}

11
BasicGeometry/Attitude.cs Normal file
View file

@ -0,0 +1,11 @@
namespace BGC
{
public enum Attitude
{
ANY = 0,
ZERO = 1,
ORTHOGONAL = 2,
CO_DIRECTIONAL = 3,
COUNTER_DIRECTIONAL = 4
}
}

12
BasicGeometry/Axis.cs Normal file
View file

@ -0,0 +1,12 @@
namespace BGC
{
public enum Axis
{
X1 = 1,
X2 = 2,
X3 = 3,
REVERSE_X1 = -1,
REVERSE_X2 = -2,
REVERSE_X3 = -3
}
}

View file

@ -0,0 +1,171 @@

namespace BGC
{
public struct ComplexFP32
{
public float real = 0.0f;
public float imaginary = 0.0f;
public ComplexFP32(float real, float imaginary)
{
this.real = real;
this.imaginary = imaginary;
}
public ComplexFP32(in ComplexFP32 number)
{
this.real = number.real;
this.imaginary = number.imaginary;
}
public readonly float GetSquareModulus()
{
return this.real * this.real + this.imaginary * this.imaginary;
}
public readonly float GetModulus()
{
return MathF.Sqrt(GetSquareModulus());
}
public readonly bool IsZero()
{
return GetSquareModulus() <= UtilityFP32.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP32.IsSqareUnit(GetSquareModulus());
}
public void Reset()
{
this.real = 0.0f;
this.imaginary = 0.0f;
}
public void MakeOpposite()
{
this.real = -this.real;
this.imaginary = -this.imaginary;
}
public bool Normalize()
{
float squareModulus = this.GetSquareModulus();
if (UtilityFP32.IsSqareUnit(squareModulus))
{
return true;
}
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
this.real *= multiplier;
this.imaginary *= multiplier;
return true;
}
public void Conjugate()
{
this.imaginary = -this.imaginary;
}
public bool Invert()
{
float squareModulus = this.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
return false;
}
float multiplicand = 1.0f / squareModulus;
this.real *= multiplicand;
this.imaginary = -this.imaginary * multiplicand;
return true;
}
public void SetValues(float real, float imaginary)
{
this.real = real;
this.imaginary = imaginary;
}
public void SetValues(in ComplexFP32 number)
{
this.real = number.real;
this.imaginary = number.imaginary;
}
public static void Reset(out ComplexFP32 number)
{
number.real = 0.0f;
number.imaginary = 0.0f;
}
public static void GetOpposite(in ComplexFP32 number, out ComplexFP32 opposite)
{
opposite.real = -number.real;
opposite.imaginary = -number.imaginary;
}
public static bool GetNormalized(in ComplexFP32 number, out ComplexFP32 normalized)
{
float squareModulus = number.GetSquareModulus();
if (UtilityFP64.IsSqareUnit(squareModulus))
{
normalized.real = number.real;
normalized.imaginary = number.imaginary;
return true;
}
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
normalized.real = 0.0f;
normalized.imaginary = 0.0f;
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
normalized.real = number.real * multiplier;
normalized.imaginary = number.imaginary * multiplier;
return true;
}
public static void GetConjugate(in ComplexFP32 number, out ComplexFP32 conjugate)
{
conjugate.real = number.real;
conjugate.imaginary = -number.imaginary;
}
public static bool GetInverse(in ComplexFP32 number, out ComplexFP32 inverse)
{
float squareModulus = number.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
inverse.real = 0.0f;
inverse.imaginary = 0.0f;
return false;
}
float multiplicand = 1.0f / squareModulus;
inverse.real = number.real * multiplicand;
inverse.imaginary = -number.imaginary * multiplicand;
return true;
}
}
}

View file

@ -1,12 +1,12 @@

/*
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 18 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP32Degrees
public class DegreeFP32
{
public const float RADIANS_IN_DEGREE = 1.745329252E-2f;
public const float TURNS_IN_DEGREE = 2.7777777778E-3f;

View file

@ -1,12 +1,12 @@

/*
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 18 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP64Degrees
public class DegreeFP64
{
public const double RADIANS_IN_DEGREE = 1.74532925199432958E-2;
public const double TURNS_IN_DEGREE = 2.77777777777777778E-3;

View file

@ -1,203 +0,0 @@
using System;
namespace BasicGeometry
{
public struct FP32Quaternion
{
public float s0 = 0.0f, x1 = 0.0f, x2 = 0.0f, x3 = 0.0f;
public FP32Quaternion(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public FP32Quaternion(in FP32Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public FP32Quaternion(in FP64Quaternion quaternion)
{
this.s0 = (float)quaternion.s0;
this.x1 = (float)quaternion.x1;
this.x2 = (float)quaternion.x2;
this.x3 = (float)quaternion.x3;
}
public void Reset()
{
this.s0 = 0.0f;
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void Conjugate()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void SetValues(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in FP32Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public void SetValues(in FP64Quaternion quaternion)
{
this.s0 = (float)quaternion.s0;
this.x1 = (float)quaternion.x1;
this.x2 = (float)quaternion.x2;
this.x3 = (float)quaternion.x3;
}
public void SetConjugateOf(in FP32Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = -quaternion.x1;
this.x2 = -quaternion.x2;
this.x3 = -quaternion.x3;
}
public readonly void MakeRotationMatrix(out FP32Matrix3x3 matrix)
{
float s0s0 = this.s0 * this.s0;
float x1x1 = this.x1 * this.x1;
float x2x2 = this.x2 * this.x2;
float x3x3 = this.x3 * this.x3;
float squareModule = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-FP32Utility.EPSYLON <= squareModule && squareModule <= FP32Utility.EPSYLON)
{
FP32Matrix3x3.LoadIdentity(out matrix);
return;
}
float corrector1;
float corrector2;
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON) {
corrector1 = 2.0f - squareModule;
corrector2 = 2.0f * corrector1;
}
else {
corrector1 = 1.0f / squareModule;
corrector2 = 2.0f / squareModule;
}
float s0x1 = this.s0 * this.x1;
float s0x2 = this.s0 * this.x2;
float s0x3 = this.s0 * this.x3;
float x1x2 = this.x1 * this.x2;
float x1x3 = this.x1 * this.x3;
float x2x3 = this.x2 * this.x3;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 - s0x3);
matrix.r2c3 = corrector2 * (x2x3 - s0x1);
matrix.r3c1 = corrector2 * (x1x3 - s0x2);
matrix.r2c1 = corrector2 * (x1x2 + s0x3);
matrix.r3c2 = corrector2 * (x2x3 + s0x1);
matrix.r1c3 = corrector2 * (x1x3 + s0x2);
}
public readonly void MakeReverseMatrix(out FP32Matrix3x3 matrix)
{
float s0s0 = this.s0 * this.s0;
float x1x1 = this.x1 * this.x1;
float x2x2 = this.x2 * this.x2;
float x3x3 = this.x3 * this.x3;
float squareModule = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-FP32Utility.EPSYLON <= squareModule && squareModule <= FP32Utility.EPSYLON)
{
FP32Matrix3x3.LoadIdentity(out matrix);
return;
}
float corrector1;
float corrector2;
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON) {
corrector1 = 2.0f - squareModule;
corrector2 = 2.0f * corrector1;
}
else {
corrector1 = 1.0f / squareModule;
corrector2 = 2.0f / squareModule;
}
float s0x1 = this.s0 * this.x1;
float s0x2 = this.s0 * this.x2;
float s0x3 = this.s0 * this.x3;
float x1x2 = this.x1 * this.x2;
float x1x3 = this.x1 * this.x3;
float x2x3 = this.x2 * this.x3;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 + s0x3);
matrix.r2c3 = corrector2 * (x2x3 + s0x1);
matrix.r3c1 = corrector2 * (x1x3 + s0x2);
matrix.r2c1 = corrector2 * (x1x2 - s0x3);
matrix.r3c2 = corrector2 * (x2x3 - s0x1);
matrix.r1c3 = corrector2 * (x1x3 - s0x2);
}
public static void Add(in FP32Quaternion quaternion1, in FP32Quaternion quaternion2, out FP32Quaternion sum)
{
sum.s0 = quaternion1.s0 + quaternion2.s0;
sum.x1 = quaternion1.x1 + quaternion2.x1;
sum.x2 = quaternion1.x2 + quaternion2.x2;
sum.x3 = quaternion1.x3 + quaternion2.x3;
}
public static void Subtract(in FP32Quaternion minuend, in FP32Quaternion subtrahend, out FP32Quaternion difference)
{
difference.s0 = minuend.s0 - subtrahend.s0;
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in FP32Quaternion left, in FP32Quaternion right, out FP32Quaternion product)
{
float s0 = (left.s0 * right.s0 - left.x1 * right.x1) - (left.x2 * right.x2 + left.x3 * right.x3);
float x1 = (left.x1 * right.s0 + left.s0 * right.x1) - (left.x3 * right.x2 - left.x2 * right.x3);
float x2 = (left.x2 * right.s0 + left.s0 * right.x2) - (left.x1 * right.x3 - left.x3 * right.x1);
float x3 = (left.x3 * right.s0 + left.s0 * right.x3) - (left.x2 * right.x1 - left.x1 * right.x2);
product.s0 = s0;
product.x1 = x1;
product.x2 = x2;
product.x3 = x3;
}
}
}

View file

@ -1,44 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* Date: 2 Feb 2019
*/
namespace BasicGeometry
{
public struct FP32Rotation3
{
private float angle = 0.0f;
private FP32Vector3 axis;
public FP32Rotation3(FP32Rotation3 rotation)
{
this.angle = rotation.angle;
this.axis = rotation.axis;
}
public void Reset()
{
this.angle = 0.0f;
this.axis.Reset();
}
}
}

View file

@ -1,21 +0,0 @@
using System;
namespace BasicGeometry
{
public class FP32Utility
{
public const float EPSYLON = 5E-7f;
public const float TWO_EPSYLON = 1E-6f;
public const float SQUARE_EPSYLON = 2.5E-13f;
public const float EPSYLON_EFFECTIVENESS_LIMIT = 1.0f;
public const float ONE_THIRD = 0.333333333f;
public const float ONE_SIXTH = 0.166666667f;
public const float ONE_NINETH = 0.111111111f;
public const float GOLDEN_RATIO_HIGH = 1.618034f;
public const float GOLDEN_RATIO_LOW = 0.618034f;
}
}

View file

@ -1,257 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* Date: 1 Feb 2019
*/
namespace BasicGeometry
{
public struct FP32Vector2
{
public static readonly FP32Vector2 ZERO = new FP32Vector2(0.0f, 0.0f);
public float x1 = 0.0f;
public float x2 = 0.0f;
public FP32Vector2(float x1, float x2)
{
this.x1 = x1;
this.x2 = x2;
}
public FP32Vector2(in FP32Vector2 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public FP32Vector2(in FP64Vector2 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
}
public readonly float GetSquareModule()
{
return this.x1 * this.x1 + this.x2 * this.x2;
}
public readonly float GetModule()
{
return MathF.Sqrt(this.GetSquareModule());
}
public int Normalize()
{
float squareModule = this.GetSquareModule();
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON)
{
return 1;
}
if (squareModule <= FP32Utility.SQUARE_EPSYLON)
{
this.Reset();
return 0;
}
float module = MathF.Sqrt(squareModule);
this.x1 /= module;
this.x2 /= module;
return 1;
}
public void Reverse()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
}
public readonly bool IsZero()
{
return this.GetSquareModule() <= FP32Utility.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
float squareModule = this.GetSquareModule();
return 1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= FP32Utility.EPSYLON;
}
public void Reset()
{
this.x1 = 0.0f;
this.x2 = 0.0f;
}
public void SetValues(float x1, float x2)
{
this.x1 = x1;
this.x2 = x2;
}
public void SetValues(in FP32Vector2 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public void SetValues(in FP64Vector2 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
}
public void SetReverseOf(in FP32Vector2 vector)
{
this.x1 = -vector.x1;
this.x2 = -vector.x2;
}
public void SetReverseOf(in FP64Vector2 vector)
{
this.x1 = -(float)vector.x1;
this.x2 = -(float)vector.x2;
}
public void AppendScaled(FP32Vector2 summand, float scale)
{
this.x1 += summand.x1 * scale;
this.x2 += summand.x2 * scale;
}
public readonly override string ToString()
{
return String.Format("SPVector2({0}, {1})", this.x1, this.x2);
}
public static void Add(in FP32Vector2 vector1, in FP32Vector2 vector2, out FP32Vector2 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
}
public static void Subtract(in FP32Vector2 minuend, in FP32Vector2 subtrahend, out FP32Vector2 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
}
public static void Multiply(in FP32Vector2 multiplicand, float multiplier, out FP32Vector2 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
}
public static void Divide(in FP32Vector2 dividend, float divisor, out FP32Vector2 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetMean2(in FP32Vector2 vector1, in FP32Vector2 vector2, out FP32Vector2 result)
{
result.x1 = (vector1.x1 + vector2.x1) * 0.5f;
result.x2 = (vector1.x2 + vector2.x2) * 0.5f;
}
public static void GetMean3(in FP32Vector2 vector1, in FP32Vector2 vector2, in FP32Vector2 vector3, out FP32Vector2 result)
{
result.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * FP32Utility.ONE_THIRD;
result.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * FP32Utility.ONE_THIRD;
}
public static float GetScalarProduct(in FP32Vector2 vector1, in FP32Vector2 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2;
}
public static float GetCrossProduct(in FP32Vector2 vector1, in FP32Vector2 vector2)
{
return vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
}
public static float GetAngle(in FP32Vector2 vector1, in FP32Vector2 vector2, AngleUnit unit)
{
float squareModule1 = vector1.GetSquareModule();
if (squareModule1 <= FP32Utility.SQUARE_EPSYLON)
{
return 0.0f;
}
float squareModule2 = vector2.GetSquareModule();
if (squareModule2 <= FP32Utility.SQUARE_EPSYLON)
{
return 0.0f;
}
float cosine = FP32Vector2.GetScalarProduct(vector1, vector2) / MathF.Sqrt(squareModule1 * squareModule2);
if (1.0f - FP32Utility.EPSYLON <= cosine)
{
return 0.0f;
}
if (cosine <= -(1.0f - FP32Utility.EPSYLON))
{
return FP32Angle.GetHalfCircle(unit);
}
return FP32Radians.ToUnits(MathF.Acos(cosine), unit);
}
public static float GetSquareDistance(in FP32Vector2 vector1, in FP32Vector2 vector2)
{
float dx1 = vector1.x1 - vector2.x1;
float dx2 = vector1.x2 - vector2.x2;
return dx1 * dx1 + dx2 * dx2;
}
public static float GetDistance(in FP32Vector2 vector1, in FP32Vector2 vector2)
{
return MathF.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreEqual(in FP32Vector2 vector1, in FP32Vector2 vector2)
{
float squareModule1 = vector1.GetSquareModule();
float squareModule2 = vector2.GetSquareModule();
float squareModule3 = GetSquareDistance(vector1, vector2);
// 2.0f means dimension amount
if (squareModule1 < FP32Utility.EPSYLON_EFFECTIVENESS_LIMIT || squareModule2 < FP32Utility.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareModule3 < (2.0f * FP32Utility.SQUARE_EPSYLON);
}
if (squareModule1 <= squareModule2)
{
return squareModule3 <= (2.0f * FP32Utility.SQUARE_EPSYLON) * squareModule2;
}
return squareModule3 <= (2.0f * FP32Utility.SQUARE_EPSYLON) * squareModule1;
}
}
}

View file

@ -1,300 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* Date: 1 Feb 2019
*/
namespace BasicGeometry
{
public struct FP32Vector3
{
public static readonly FP32Vector3 ZERO = new FP32Vector3(0.0f, 0.0f, 0.0f);
public float x1 = 0.0f;
public float x2 = 0.0f;
public float x3 = 0.0f;
public FP32Vector3(float x1, float x2, float x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public FP32Vector3(in FP32Vector3 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public FP32Vector3(in FP64Vector3 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
this.x3 = (float)vector.x3;
}
public readonly float GetSquareModule()
{
return this.x1 * this.x1 + this.x2 * this.x2 + this.x3 * this.x3;
}
public readonly float GetModule()
{
return MathF.Sqrt(this.GetSquareModule());
}
public int Normalize()
{
float squareModule = this.GetSquareModule();
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON)
{
return 1;
}
if (squareModule <= FP32Utility.SQUARE_EPSYLON)
{
this.Reset();
return 0;
}
float module = MathF.Sqrt(squareModule);
this.x1 /= module;
this.x2 /= module;
this.x3 /= module;
return 1;
}
public void Reverse()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public readonly bool IsZero()
{
return this.GetSquareModule() <= FP32Utility.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
float squareModule = this.GetSquareModule();
return 1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= FP32Utility.EPSYLON;
}
public void Reset()
{
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void SetValues(float x1, float x2, float x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in FP64Vector3 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
this.x3 = (float)vector.x3;
}
public void SetValues(in FP32Vector3 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public void SetReverseOf(in FP32Vector3 vector)
{
this.x1 = -vector.x1;
this.x2 = -vector.x2;
this.x3 = -vector.x3;
}
public void SetReverseOf(in FP64Vector3 vector)
{
this.x1 = -(float)vector.x1;
this.x2 = -(float)vector.x2;
this.x3 = -(float)vector.x3;
}
public void AppendScaled(FP32Vector3 summand, float scale)
{
this.x1 += summand.x1 * scale;
this.x2 += summand.x2 * scale;
this.x3 += summand.x3 * scale;
}
public readonly override string ToString()
{
return String.Format("SPVector3({0}, {1}, {2})", this.x1, this.x2, this.x3);
}
public static void Add(in FP32Vector3 vector1, in FP32Vector3 vector2, out FP32Vector3 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
sum.x3 = vector1.x3 + vector2.x3;
}
public static void Subtract(in FP32Vector3 minuend, in FP32Vector3 subtrahend, out FP32Vector3 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in FP32Vector3 multiplicand, float multiplier, out FP32Vector3 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
product.x3 = multiplicand.x3 * multiplier;
}
public static void Divide(in FP32Vector3 dividend, float divisor, out FP32Vector3 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetMean2(in FP32Vector3 vector1, in FP32Vector3 vector2, out FP32Vector3 result)
{
result.x1 = (vector1.x1 + vector2.x1) * 0.5f;
result.x2 = (vector1.x2 + vector2.x2) * 0.5f;
result.x3 = (vector1.x3 + vector2.x3) * 0.5f;
}
public static void GetMean3(in FP32Vector3 vector1, in FP32Vector3 vector2, in FP32Vector3 vector3, out FP32Vector3 result)
{
result.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * FP32Utility.ONE_THIRD;
result.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * FP32Utility.ONE_THIRD;
result.x3 = (vector1.x3 + vector2.x3 + vector3.x3) * FP32Utility.ONE_THIRD;
}
public static float GetScalarProduct(in FP32Vector3 vector1, in FP32Vector3 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2 + vector1.x3 * vector2.x3;
}
public static void GetCrossProduct(in FP32Vector3 vector1, in FP32Vector3 vector2, out FP32Vector3 result)
{
float x1 = vector1.x2 * vector2.x3 - vector1.x3 * vector2.x2;
float x2 = vector1.x3 * vector2.x1 - vector1.x1 * vector2.x3;
float x3 = vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public static float GetTripleProduct(in FP32Vector3 vector1, in FP32Vector3 vector2, in FP32Vector3 vector3)
{
return vector1.x1 * (vector2.x2 * vector3.x3 - vector2.x3 * vector3.x2)
+ vector1.x2 * (vector2.x3 * vector3.x1 - vector2.x1 * vector3.x3)
+ vector1.x3 * (vector2.x1 * vector3.x2 - vector2.x2 * vector3.x1);
}
public static void GetDoubleCrossProduct(in FP32Vector3 vector1, in FP32Vector3 vector2, in FP32Vector3 vector3, out FP32Vector3 result)
{
// [a x [b x c]] = b * (a, c) - c * (a, b)
float ac = GetScalarProduct(vector1, vector3);
float ab = GetScalarProduct(vector1, vector2);
result.x1 = ac * vector2.x1 - ab * vector3.x1;
result.x2 = ac * vector2.x2 - ab * vector3.x2;
result.x3 = ac * vector2.x3 - ab * vector3.x3;
}
public static float GetAngle(in FP32Vector3 vector1, in FP32Vector3 vector2, AngleUnit unit)
{
float squareModule1 = vector1.GetSquareModule();
if (squareModule1 <= FP32Utility.SQUARE_EPSYLON)
{
return 0.0f;
}
float squareModule2 = vector2.GetSquareModule();
if (squareModule2 <= FP32Utility.SQUARE_EPSYLON)
{
return 0.0f;
}
float cosine = FP32Vector3.GetScalarProduct(vector1, vector2) / MathF.Sqrt(squareModule1 * squareModule2);
if (1.0f - FP32Utility.EPSYLON <= cosine)
{
return 0.0f;
}
if (cosine <= -(1.0f - FP32Utility.EPSYLON))
{
return FP32Angle.GetHalfCircle(unit);
}
return FP32Radians.ToUnits(MathF.Acos(cosine), unit);
}
public static float GetSquareDistance(in FP32Vector3 vector1, in FP32Vector3 vector2)
{
float dx1 = vector1.x1 - vector2.x1;
float dx2 = vector1.x2 - vector2.x2;
float dx3 = vector1.x3 - vector2.x3;
return dx1 * dx1 + dx2 * dx2 + dx3 * dx3;
}
public static float GetDistance(in FP32Vector3 vector1, in FP32Vector3 vector2)
{
return MathF.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreEqual(in FP32Vector3 vector1, in FP32Vector3 vector2)
{
float squareModule1 = vector1.GetSquareModule();
float squareModule2 = vector2.GetSquareModule();
float squareModule3 = GetSquareDistance(vector1, vector2);
// 3.0f means dimension amount
if (squareModule1 < FP32Utility.EPSYLON_EFFECTIVENESS_LIMIT || squareModule2 < FP32Utility.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareModule3 < (3.0f * FP32Utility.SQUARE_EPSYLON);
}
if (squareModule1 <= squareModule2)
{
return squareModule3 <= (3.0f * FP32Utility.SQUARE_EPSYLON) * squareModule2;
}
return squareModule3 <= (3.0f * FP32Utility.SQUARE_EPSYLON) * squareModule1;
}
}
}

View file

@ -1,304 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Author: Andrey Pokidov
* Date: 20 Oct 2024
*/
namespace BasicGeometry
{
public struct FP32Versor
{
private float s0 = 1.0f;
private float x1 = 0.0f;
private float x2 = 0.0f;
private float x3 = 0.0f;
public FP32Versor(float s0, float x1, float x2, float x3)
{
LoadValues(s0, x1, x2, x3, out this);
}
public FP32Versor(in FP32Versor versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public FP32Versor(in FP64Versor versor)
{
this.s0 = (float)versor.GetScalar();
this.x1 = (float)versor.GetX1();
this.x2 = (float)versor.GetX2();
this.x3 = (float)versor.GetX3();
}
public readonly float GetScalar()
{
return this.s0;
}
public readonly float GetX1()
{
return this.x1;
}
public readonly float GetX2()
{
return this.x2;
}
public readonly float GetX3()
{
return this.x3;
}
public readonly bool IsIdle()
{
return this.s0 <= -(1.0f - FP32Utility.EPSYLON) || (1.0f - FP32Utility.EPSYLON) <= this.s0;
}
public void Reset()
{
this.s0 = 1.0f;
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void Invert()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public readonly float GetAngle(AngleUnit unit)
{
if (this.s0 <= -(1.0f - FP32Utility.TWO_EPSYLON) || 1.0f - FP32Utility.TWO_EPSYLON <= this.s0) {
return 0.0f;
}
if (-FP32Utility.EPSYLON <= this.s0 && this.s0 <= FP32Utility.EPSYLON)
{
return FP32Angle.GetHalfCircle(unit);
}
return FP32Radians.ToUnits(2.0f * MathF.Acos(s0), unit);
}
public readonly void MakeRotationMatrix(out FP32Matrix3x3 matrix)
{
float s0s0 = this.s0 * this.s0;
float x1x1 = this.x1 * this.x1;
float x2x2 = this.x1 * this.x2;
float x3x3 = this.x1 * this.x3;
float s0x1 = 2.0f * this.s0 * this.x1;
float s0x2 = 2.0f * this.s0 * this.x2;
float s0x3 = 2.0f * this.s0 * this.x3;
float x1x2 = 2.0f * this.x1 * this.x2;
float x1x3 = 2.0f * this.x1 * this.x3;
float x2x3 = 2.0f * this.x2 * this.x3;
matrix.r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix.r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix.r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix.r1c2 = x1x2 - s0x3;
matrix.r2c3 = x2x3 - s0x1;
matrix.r3c1 = x1x3 - s0x2;
matrix.r2c1 = x1x2 + s0x3;
matrix.r3c2 = x2x3 + s0x1;
matrix.r1c3 = x1x3 + s0x2;
}
public readonly void MakeReverseMatrix(out FP32Matrix3x3 matrix)
{
float s0s0 = this.s0 * this.s0;
float x1x1 = this.x1 * this.x1;
float x2x2 = this.x1 * this.x2;
float x3x3 = this.x1 * this.x3;
float s0x1 = 2.0f * this.s0 * this.x1;
float s0x2 = 2.0f * this.s0 * this.x2;
float s0x3 = 2.0f * this.s0 * this.x3;
float x1x2 = 2.0f * this.x1 * this.x2;
float x1x3 = 2.0f * this.x1 * this.x3;
float x2x3 = 2.0f * this.x2 * this.x3;
matrix.r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix.r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix.r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix.r1c2 = x1x2 + s0x3;
matrix.r2c3 = x2x3 + s0x1;
matrix.r3c1 = x1x3 + s0x2;
matrix.r2c1 = x1x2 - s0x3;
matrix.r3c2 = x2x3 - s0x1;
matrix.r1c3 = x1x3 - s0x2;
}
public void SetValues(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
float squareModule = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON)
{
return;
}
this.Normalize(squareModule);
}
public void SetValues(in FP32Versor versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public void SetValues(in FP64Versor versor)
{
this.s0 = (float) versor.GetScalar();
this.x1 = (float) versor.GetX1();
this.x2 = (float) versor.GetX2();
this.x3 = (float) versor.GetX3();
}
public void SetInverted(in FP32Versor versor)
{
this.s0 = versor.s0;
this.x1 = -versor.x1;
this.x2 = -versor.x2;
this.x3 = -versor.x3;
}
public void SetInverted(in FP64Versor versor)
{
this.s0 = (float) versor.GetScalar();
this.x1 = (float) -versor.GetX1();
this.x2 = (float) -versor.GetX2();
this.x3 = (float) -versor.GetX3();
}
public readonly void Turn(in FP32Vector3 vector, out FP32Vector3 result)
{
float tx1 = 2.0f * (this.x2 * vector.x3 - this.x3 * vector.x2);
float tx2 = 2.0f * (this.x3 * vector.x1 - this.x1 * vector.x3);
float tx3 = 2.0f * (this.x1 * vector.x2 - this.x2 * vector.x1);
float x1 = (vector.x1 + tx1 * this.s0) + (this.x2 * tx3 - this.x3 * tx2);
float x2 = (vector.x2 + tx2 * this.s0) + (this.x3 * tx1 - this.x1 * tx3);
float x3 = (vector.x3 + tx3 * this.s0) + (this.x1 * tx2 - this.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public readonly void TurnBack(in FP32Vector3 vector, out FP32Vector3 result)
{
float tx1 = 2.0f * (this.x2 * vector.x3 - this.x3 * vector.x2);
float tx2 = 2.0f * (this.x3 * vector.x1 - this.x1 * vector.x3);
float tx3 = 2.0f * (this.x1 * vector.x2 - this.x2 * vector.x1);
float x1 = (vector.x1 - tx1 * this.s0) + (this.x2 * tx3 - this.x3 * tx2);
float x2 = (vector.x2 - tx2 * this.s0) + (this.x3 * tx1 - this.x1 * tx3);
float x3 = (vector.x3 - tx3 * this.s0) + (this.x1 * tx2 - this.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
private void Normalize(float squareModule)
{
if (squareModule <= FP32Utility.SQUARE_EPSYLON)
{
this.Reset();
return;
}
float multiplier = MathF.Sqrt(1.0f / squareModule);
this.s0 *= multiplier;
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
}
public static void Combine(in FP32Versor second, in FP32Versor first, out FP32Versor result)
{
float s0 = (second.s0 * first.s0 - second.x1 * first.x1) - (second.x2 * first.x2 + second.x3 * first.x3);
float x1 = (second.x1 * first.s0 + second.s0 * first.x1) - (second.x3 * first.x2 - second.x2 * first.x3);
float x2 = (second.x2 * first.s0 + second.s0 * first.x2) - (second.x1 * first.x3 - second.x3 * first.x1);
float x3 = (second.x3 * first.s0 + second.s0 * first.x3) - (second.x2 * first.x1 - second.x1 * first.x2);
float squareModule = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
result.s0 = s0;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON)
{
return;
}
result.Normalize(squareModule);
}
public static void LoadIdle(out FP32Versor versor)
{
versor.s0 = 1.0f;
versor.x1 = 0.0f;
versor.x2 = 0.0f;
versor.x3 = 0.0f;
}
public static void LoadValues(float s0, float x1, float x2, float x3, out FP32Versor versor)
{
versor.s0 = s0;
versor.x1 = x1;
versor.x2 = x2;
versor.x3 = x3;
float squareModule = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (1.0f - FP32Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + FP32Utility.TWO_EPSYLON)
{
return;
}
versor.Normalize(squareModule);
}
}
}

View file

@ -1,204 +0,0 @@
using System;
using System.Numerics;
namespace BasicGeometry
{
public struct FP64Quaternion
{
public double s0 = 0.0, x1 = 0.0, x2 = 0.0, x3 = 0.0;
public FP64Quaternion(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public FP64Quaternion(in FP32Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public FP64Quaternion(in FP64Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public void Reset()
{
this.s0 = 0.0;
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void Conjugate()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void SetValues(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in FP32Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public void SetValues(in FP64Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public void SetConjugateOf(in FP64Quaternion quaternion)
{
this.s0 = quaternion.s0;
this.x1 = -quaternion.x1;
this.x2 = -quaternion.x2;
this.x3 = -quaternion.x3;
}
public readonly void MakeRotationMatrix(out FP64Matrix3x3 matrix)
{
double s0s0 = this.s0 * this.s0;
double x1x1 = this.x1 * this.x1;
double x2x2 = this.x2 * this.x2;
double x3x3 = this.x3 * this.x3;
double squareModule = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-FP64Utility.EPSYLON <= squareModule && squareModule <= FP64Utility.EPSYLON)
{
FP64Matrix3x3.LoadIdentity(out matrix);
return;
}
double corrector1;
double corrector2;
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON) {
corrector1 = 2.0 - squareModule;
corrector2 = 2.0 * corrector1;
}
else {
corrector1 = 1.0 / squareModule;
corrector2 = 2.0 / squareModule;
}
double s0x1 = this.s0 * this.x1;
double s0x2 = this.s0 * this.x2;
double s0x3 = this.s0 * this.x3;
double x1x2 = this.x1 * this.x2;
double x1x3 = this.x1 * this.x3;
double x2x3 = this.x2 * this.x3;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 - s0x3);
matrix.r2c3 = corrector2 * (x2x3 - s0x1);
matrix.r3c1 = corrector2 * (x1x3 - s0x2);
matrix.r2c1 = corrector2 * (x1x2 + s0x3);
matrix.r3c2 = corrector2 * (x2x3 + s0x1);
matrix.r1c3 = corrector2 * (x1x3 + s0x2);
}
public readonly void MakeReverseMatrix(out FP64Matrix3x3 matrix)
{
double s0s0 = this.s0 * this.s0;
double x1x1 = this.x1 * this.x1;
double x2x2 = this.x2 * this.x2;
double x3x3 = this.x3 * this.x3;
double squareModule = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-FP64Utility.EPSYLON <= squareModule && squareModule <= FP64Utility.EPSYLON)
{
FP64Matrix3x3.LoadIdentity(out matrix);
return;
}
double corrector1;
double corrector2;
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON) {
corrector1 = 2.0 - squareModule;
corrector2 = 2.0 * corrector1;
}
else {
corrector1 = 1.0 / squareModule;
corrector2 = 2.0 / squareModule;
}
double s0x1 = this.s0 * this.x1;
double s0x2 = this.s0 * this.x2;
double s0x3 = this.s0 * this.x3;
double x1x2 = this.x1 * this.x2;
double x1x3 = this.x1 * this.x3;
double x2x3 = this.x2 * this.x3;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 + s0x3);
matrix.r2c3 = corrector2 * (x2x3 + s0x1);
matrix.r3c1 = corrector2 * (x1x3 + s0x2);
matrix.r2c1 = corrector2 * (x1x2 - s0x3);
matrix.r3c2 = corrector2 * (x2x3 - s0x1);
matrix.r1c3 = corrector2 * (x1x3 - s0x2);
}
public static void Add(in FP64Quaternion quaternion1, in FP64Quaternion quaternion2, out FP64Quaternion sum)
{
sum.s0 = quaternion1.s0 + quaternion2.s0;
sum.x1 = quaternion1.x1 + quaternion2.x1;
sum.x2 = quaternion1.x2 + quaternion2.x2;
sum.x3 = quaternion1.x3 + quaternion2.x3;
}
public static void Subtract(in FP64Quaternion minuend, in FP64Quaternion subtrahend, out FP64Quaternion difference)
{
difference.s0 = minuend.s0 - subtrahend.s0;
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in FP64Quaternion left, in FP64Quaternion right, out FP64Quaternion product)
{
double s0 = (left.s0 * right.s0 - left.x1 * right.x1) - (left.x2 * right.x2 + left.x3 * right.x3);
double x1 = (left.x1 * right.s0 + left.s0 * right.x1) - (left.x3 * right.x2 - left.x2 * right.x3);
double x2 = (left.x2 * right.s0 + left.s0 * right.x2) - (left.x1 * right.x3 - left.x3 * right.x1);
double x3 = (left.x3 * right.s0 + left.s0 * right.x3) - (left.x2 * right.x1 - left.x1 * right.x2);
product.s0 = s0;
product.x1 = x1;
product.x2 = x2;
product.x3 = x3;
}
}
}

View file

@ -1,20 +0,0 @@
using System;
namespace BasicGeometry
{
public class FP64Utility
{
public const double EPSYLON = 5E-14;
public const double TWO_EPSYLON = 1E-13;
public const double SQUARE_EPSYLON = 2.5E-27;
public const double EPSYLON_EFFECTIVENESS_LIMIT = 1.0;
public const double ONE_THIRD = 0.333333333333333333;
public const double ONE_SIXTH = 0.166666666666666667;
public const double ONE_NINETH = 0.111111111111111111;
public const double GOLDEN_RATIO_HIGH = 1.61803398874989485;
public const double GOLDEN_RATIO_LOW = 0.61803398874989485;
}
}

View file

@ -1,257 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* Date: 1 Feb 2019
*/
namespace BasicGeometry
{
public struct FP64Vector2
{
public static readonly FP64Vector2 ZERO = new FP64Vector2(0.0, 0.0);
public double x1 = 0.0;
public double x2 = 0.0;
public FP64Vector2(double x1, double x2)
{
this.x1 = x1;
this.x2 = x2;
}
public FP64Vector2(in FP64Vector2 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public FP64Vector2(in FP32Vector2 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public readonly double GetSquareModule()
{
return this.x1 * this.x1 + this.x2 * this.x2;
}
public readonly double GetModule()
{
return Math.Sqrt(this.GetSquareModule());
}
public int Normalize()
{
double squareModule = this.GetSquareModule();
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON)
{
return 1;
}
if (squareModule <= FP64Utility.SQUARE_EPSYLON)
{
this.Reset();
return 0;
}
double module = Math.Sqrt(squareModule);
this.x1 /= module;
this.x2 /= module;
return 1;
}
public void Reverse()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
}
public readonly bool IsZero()
{
return this.GetSquareModule() <= FP64Utility.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
double squareModule = this.GetSquareModule();
return 1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= FP64Utility.EPSYLON;
}
public void Reset()
{
this.x1 = 0.0;
this.x2 = 0.0;
}
public void SetValues(double x1, double x2)
{
this.x1 = x1;
this.x2 = x2;
}
public void SetValues(in FP64Vector2 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public void SetValues(in FP32Vector2 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public void SetReverseOf(in FP64Vector2 vector)
{
this.x1 = -vector.x1;
this.x2 = -vector.x2;
}
public void SetReverseOf(in FP32Vector2 vector)
{
this.x1 = -vector.x1;
this.x2 = -vector.x2;
}
public void AppendScaled(FP64Vector2 summand, double scale)
{
this.x1 += summand.x1 * scale;
this.x2 += summand.x2 * scale;
}
public readonly override string ToString()
{
return String.Format("DPVector2({0}, {1})", this.x1, this.x2);
}
public static void Add(in FP64Vector2 vector1, in FP64Vector2 vector2, out FP64Vector2 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
}
public static void Subtract(in FP64Vector2 minuend, in FP64Vector2 subtrahend, out FP64Vector2 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
}
public static void Multiply(in FP64Vector2 multiplicand, double multiplier, out FP64Vector2 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
}
public static void Divide(in FP64Vector2 dividend, double divisor, out FP64Vector2 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetMean2(in FP64Vector2 vector1, in FP64Vector2 vector2, out FP64Vector2 result)
{
result.x1 = (vector1.x1 + vector2.x1) * 0.5;
result.x2 = (vector1.x2 + vector2.x2) * 0.5;
}
public static void GetMean3(in FP64Vector2 vector1, in FP64Vector2 vector2, in FP64Vector2 vector3, out FP64Vector2 result)
{
result.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * FP64Utility.ONE_THIRD;
result.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * FP64Utility.ONE_THIRD;
}
public static double GetScalarProduct(in FP64Vector2 vector1, in FP64Vector2 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2;
}
public static double GetCrossProduct(in FP64Vector2 vector1, in FP64Vector2 vector2)
{
return vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
}
public static double GetAngle(in FP64Vector2 vector1, in FP64Vector2 vector2, AngleUnit unit)
{
double squareModule1 = vector1.GetSquareModule();
if (squareModule1 <= FP64Utility.SQUARE_EPSYLON)
{
return 0.0;
}
double squareModule2 = vector2.GetSquareModule();
if (squareModule2 <= FP64Utility.SQUARE_EPSYLON)
{
return 0.0;
}
double cosine = FP64Vector2.GetScalarProduct(vector1, vector2) / Math.Sqrt(squareModule1 * squareModule2);
if (1.0 - FP64Utility.EPSYLON <= cosine)
{
return 0.0;
}
if (cosine <= -(1.0 - FP64Utility.EPSYLON))
{
return FP64Angle.GetHalfCircle(unit);
}
return FP64Radians.ToUnits(Math.Acos(cosine), unit);
}
public static double GetSquareDistance(in FP64Vector2 vector1, in FP64Vector2 vector2)
{
double dx1 = vector1.x1 - vector2.x1;
double dx2 = vector1.x2 - vector2.x2;
return dx1 * dx1 + dx2 * dx2;
}
public static double GetDistance(in FP64Vector2 vector1, in FP64Vector2 vector2)
{
return Math.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreEqual(in FP64Vector2 vector1, in FP64Vector2 vector2)
{
double squareModule1 = vector1.GetSquareModule();
double squareModule2 = vector2.GetSquareModule();
double squareModule3 = GetSquareDistance(vector1, vector2);
// 2.0 means dimension amount
if (squareModule1 < FP64Utility.EPSYLON_EFFECTIVENESS_LIMIT || squareModule2 < FP64Utility.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareModule3 < (2.0 * FP64Utility.SQUARE_EPSYLON);
}
if (squareModule1 <= squareModule2)
{
return squareModule3 <= (2.0 * FP64Utility.SQUARE_EPSYLON) * squareModule2;
}
return squareModule3 <= (2.0 * FP64Utility.SQUARE_EPSYLON) * squareModule1;
}
}
}

View file

@ -1,300 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* Date: 1 Feb 2019
*/
namespace BasicGeometry
{
public struct FP64Vector3
{
public static readonly FP64Vector3 ZERO = new FP64Vector3(0.0, 0.0, 0.0);
public double x1 = 0.0;
public double x2 = 0.0;
public double x3 = 0.0;
public FP64Vector3(double x1, double x2, double x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public FP64Vector3(in FP64Vector3 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public FP64Vector3(in FP32Vector3 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public readonly double GetSquareModule()
{
return this.x1 * this.x1 + this.x2 * this.x2 + this.x3 * this.x3;
}
public readonly double GetModule()
{
return Math.Sqrt(this.GetSquareModule());
}
public int Normalize()
{
double squareModule = this.GetSquareModule();
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON)
{
return 1;
}
if (squareModule <= FP64Utility.SQUARE_EPSYLON)
{
this.Reset();
return 0;
}
double module = Math.Sqrt(squareModule);
this.x1 /= module;
this.x2 /= module;
this.x3 /= module;
return 1;
}
public void Reverse()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public readonly bool IsZero()
{
return this.GetSquareModule() <= FP64Utility.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
double squareModule = this.GetSquareModule();
return 1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= FP64Utility.EPSYLON;
}
public void Reset()
{
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void SetValues(double x1, double x2, double x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in FP64Vector3 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public void SetValues(in FP32Vector3 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public void SetReverseOf(in FP64Vector3 vector)
{
this.x1 = -vector.x1;
this.x2 = -vector.x2;
this.x3 = -vector.x3;
}
public void SetReverseOf(in FP32Vector3 vector)
{
this.x1 = -vector.x1;
this.x2 = -vector.x2;
this.x3 = -vector.x3;
}
public void AppendScaled(FP64Vector3 summand, double scale)
{
this.x1 += summand.x1 * scale;
this.x2 += summand.x2 * scale;
this.x3 += summand.x3 * scale;
}
public readonly override string ToString()
{
return String.Format("DPVector3({0}, {1}, {2})", this.x1, this.x2, this.x3);
}
public static void Add(in FP64Vector3 vector1, in FP64Vector3 vector2, out FP64Vector3 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
sum.x3 = vector1.x3 + vector2.x3;
}
public static void Subtract(in FP64Vector3 minuend, in FP64Vector3 subtrahend, out FP64Vector3 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in FP64Vector3 multiplicand, double multiplier, out FP64Vector3 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
product.x3 = multiplicand.x3 * multiplier;
}
public static void Divide(in FP64Vector3 dividend, double divisor, out FP64Vector3 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetMean2(in FP64Vector3 vector1, in FP64Vector3 vector2, out FP64Vector3 result)
{
result.x1 = (vector1.x1 + vector2.x1) * 0.5;
result.x2 = (vector1.x2 + vector2.x2) * 0.5;
result.x3 = (vector1.x3 + vector2.x3) * 0.5;
}
public static void GetMean3(in FP64Vector3 vector1, in FP64Vector3 vector2, in FP64Vector3 vector3, out FP64Vector3 result)
{
result.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * FP64Utility.ONE_THIRD;
result.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * FP64Utility.ONE_THIRD;
result.x3 = (vector1.x3 + vector2.x3 + vector3.x3) * FP64Utility.ONE_THIRD;
}
public static double GetScalarProduct(in FP64Vector3 vector1, in FP64Vector3 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2 + vector1.x3 * vector2.x3;
}
public static void GetCrossProduct(in FP64Vector3 vector1, in FP64Vector3 vector2, out FP64Vector3 result)
{
double x1 = vector1.x2 * vector2.x3 - vector1.x3 * vector2.x2;
double x2 = vector1.x3 * vector2.x1 - vector1.x1 * vector2.x3;
double x3 = vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public static double GetTripleProduct(in FP64Vector3 vector1, in FP64Vector3 vector2, in FP64Vector3 vector3)
{
return vector1.x1 * (vector2.x2 * vector3.x3 - vector2.x3 * vector3.x2)
+ vector1.x2 * (vector2.x3 * vector3.x1 - vector2.x1 * vector3.x3)
+ vector1.x3 * (vector2.x1 * vector3.x2 - vector2.x2 * vector3.x1);
}
public static void GetDoubleCrossProduct(in FP64Vector3 vector1, in FP64Vector3 vector2, in FP64Vector3 vector3, out FP64Vector3 result)
{
// [a x [b x c]] = b * (a, c) - c * (a, b)
double ac = GetScalarProduct(vector1, vector3);
double ab = GetScalarProduct(vector1, vector2);
result.x1 = ac * vector2.x1 - ab * vector3.x1;
result.x2 = ac * vector2.x2 - ab * vector3.x2;
result.x3 = ac * vector2.x3 - ab * vector3.x3;
}
public static double GetAngle(in FP64Vector3 vector1, in FP64Vector3 vector2, AngleUnit unit)
{
double squareModule1 = vector1.GetSquareModule();
if (squareModule1 <= FP64Utility.SQUARE_EPSYLON)
{
return 0.0;
}
double squareModule2 = vector2.GetSquareModule();
if (squareModule2 <= FP64Utility.SQUARE_EPSYLON)
{
return 0.0;
}
double cosine = FP64Vector3.GetScalarProduct(vector1, vector2) / Math.Sqrt(squareModule1 * squareModule2);
if (1.0 - FP64Utility.EPSYLON <= cosine)
{
return 0.0;
}
if (cosine <= -(1.0 - FP64Utility.EPSYLON))
{
return FP64Angle.GetHalfCircle(unit);
}
return FP64Radians.ToUnits(Math.Acos(cosine), unit);
}
public static double GetSquareDistance(in FP64Vector3 vector1, in FP64Vector3 vector2)
{
double dx1 = vector1.x1 - vector2.x1;
double dx2 = vector1.x2 - vector2.x2;
double dx3 = vector1.x3 - vector2.x3;
return dx1 * dx1 + dx2 * dx2 + dx3 * dx3;
}
public static double GetDistance(in FP64Vector3 vector1, in FP64Vector3 vector2)
{
return Math.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreEqual(in FP64Vector3 vector1, in FP64Vector3 vector2)
{
double squareModule1 = vector1.GetSquareModule();
double squareModule2 = vector2.GetSquareModule();
double squareModule3 = GetSquareDistance(vector1, vector2);
// 3.0 means dimension amount
if (squareModule1 < FP64Utility.EPSYLON_EFFECTIVENESS_LIMIT || squareModule2 < FP64Utility.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareModule3 < (3.0 * FP64Utility.SQUARE_EPSYLON);
}
if (squareModule1 <= squareModule2)
{
return squareModule3 <= (3.0 * FP64Utility.SQUARE_EPSYLON) * squareModule2;
}
return squareModule3 <= (3.0 * FP64Utility.SQUARE_EPSYLON) * squareModule1;
}
}
}

View file

@ -1,312 +0,0 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Author: Andrey Pokidov
* Date: 20 Oct 2024
*/
namespace BasicGeometry
{
public struct FP64Versor
{
private double s0 = 1.0;
private double x1 = 0.0;
private double x2 = 0.0;
private double x3 = 0.0;
public FP64Versor(double s0, double x1, double x2, double x3)
{
LoadValues(s0, x1, x2, x3, out this);
}
public FP64Versor(in FP64Versor versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public FP64Versor(in FP32Versor versor)
{
LoadValues(
versor.GetScalar(),
versor.GetX1(),
versor.GetX2(),
versor.GetX3(),
out this);
}
public readonly double GetScalar()
{
return this.s0;
}
public readonly double GetX1()
{
return this.x1;
}
public readonly double GetX2()
{
return this.x2;
}
public readonly double GetX3()
{
return this.x3;
}
public readonly bool IsIdle()
{
return this.s0 <= -(1.0 - FP64Utility.EPSYLON) || (1.0 - FP64Utility.EPSYLON) <= this.s0;
}
public void Reset()
{
this.s0 = 1.0;
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void Invert()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public readonly double GetAngle(AngleUnit unit)
{
if (this.s0 <= -(1.0 - FP64Utility.TWO_EPSYLON) || 1.0 - FP64Utility.TWO_EPSYLON <= this.s0) {
return 0.0;
}
if (-FP64Utility.EPSYLON <= this.s0 && this.s0 <= FP64Utility.EPSYLON)
{
return FP64Angle.GetHalfCircle(unit);
}
return FP64Radians.ToUnits(2.0 * Math.Acos(s0), unit);
}
public readonly void MakeRotationMatrix(out FP64Matrix3x3 matrix)
{
double s0s0 = this.s0 * this.s0;
double x1x1 = this.x1 * this.x1;
double x2x2 = this.x1 * this.x2;
double x3x3 = this.x1 * this.x3;
double s0x1 = 2.0 * this.s0 * this.x1;
double s0x2 = 2.0 * this.s0 * this.x2;
double s0x3 = 2.0 * this.s0 * this.x3;
double x1x2 = 2.0 * this.x1 * this.x2;
double x1x3 = 2.0 * this.x1 * this.x3;
double x2x3 = 2.0 * this.x2 * this.x3;
matrix.r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix.r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix.r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix.r1c2 = x1x2 - s0x3;
matrix.r2c3 = x2x3 - s0x1;
matrix.r3c1 = x1x3 - s0x2;
matrix.r2c1 = x1x2 + s0x3;
matrix.r3c2 = x2x3 + s0x1;
matrix.r1c3 = x1x3 + s0x2;
}
public readonly void MakeReverseMatrix(out FP64Matrix3x3 matrix)
{
double s0s0 = this.s0 * this.s0;
double x1x1 = this.x1 * this.x1;
double x2x2 = this.x1 * this.x2;
double x3x3 = this.x1 * this.x3;
double s0x1 = 2.0 * this.s0 * this.x1;
double s0x2 = 2.0 * this.s0 * this.x2;
double s0x3 = 2.0 * this.s0 * this.x3;
double x1x2 = 2.0 * this.x1 * this.x2;
double x1x3 = 2.0 * this.x1 * this.x3;
double x2x3 = 2.0 * this.x2 * this.x3;
matrix.r1c1 = (s0s0 + x1x1) - (x2x2 + x3x3);
matrix.r2c2 = (s0s0 + x2x2) - (x1x1 + x3x3);
matrix.r3c3 = (s0s0 + x3x3) - (x1x1 + x2x2);
matrix.r1c2 = x1x2 + s0x3;
matrix.r2c3 = x2x3 + s0x1;
matrix.r3c1 = x1x3 + s0x2;
matrix.r2c1 = x1x2 - s0x3;
matrix.r3c2 = x2x3 - s0x1;
matrix.r1c3 = x1x3 - s0x2;
}
public void SetValues(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
double squareModule = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON)
{
return;
}
this.Normalize(squareModule);
}
public void SetValues(in FP64Versor versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public void SetValues(in FP32Versor versor)
{
LoadValues(
versor.GetScalar(),
versor.GetX1(),
versor.GetX2(),
versor.GetX3(),
out this);
}
public void SetInverted(in FP64Versor versor)
{
this.s0 = versor.s0;
this.x1 = -versor.x1;
this.x2 = -versor.x2;
this.x3 = -versor.x3;
}
public void SetInverted(in FP32Versor versor)
{
LoadValues(
versor.GetScalar(),
versor.GetX1(),
versor.GetX2(),
versor.GetX3(),
out this);
}
public readonly void Turn(in FP64Vector3 vector, out FP64Vector3 result)
{
double tx1 = 2.0 * (this.x2 * vector.x3 - this.x3 * vector.x2);
double tx2 = 2.0 * (this.x3 * vector.x1 - this.x1 * vector.x3);
double tx3 = 2.0 * (this.x1 * vector.x2 - this.x2 * vector.x1);
double x1 = (vector.x1 + tx1 * this.s0) + (this.x2 * tx3 - this.x3 * tx2);
double x2 = (vector.x2 + tx2 * this.s0) + (this.x3 * tx1 - this.x1 * tx3);
double x3 = (vector.x3 + tx3 * this.s0) + (this.x1 * tx2 - this.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public readonly void TurnBack(in FP64Vector3 vector, out FP64Vector3 result)
{
double tx1 = 2.0 * (this.x2 * vector.x3 - this.x3 * vector.x2);
double tx2 = 2.0 * (this.x3 * vector.x1 - this.x1 * vector.x3);
double tx3 = 2.0 * (this.x1 * vector.x2 - this.x2 * vector.x1);
double x1 = (vector.x1 - tx1 * this.s0) + (this.x2 * tx3 - this.x3 * tx2);
double x2 = (vector.x2 - tx2 * this.s0) + (this.x3 * tx1 - this.x1 * tx3);
double x3 = (vector.x3 - tx3 * this.s0) + (this.x1 * tx2 - this.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
private void Normalize(double squareModule)
{
if (squareModule <= FP64Utility.SQUARE_EPSYLON || (this.x1 * this.x1 + this.x2 * this.x2 + this.x3 * this.x3) <= FP64Utility.SQUARE_EPSYLON * squareModule)
{
this.Reset();
return;
}
double module = Math.Sqrt(squareModule);
this.s0 /= module;
this.x1 /= module;
this.x2 /= module;
this.x3 /= module;
}
public static void Combine(in FP64Versor second, in FP64Versor first, out FP64Versor result)
{
double s0 = (second.s0 * first.s0 - second.x1 * first.x1) - (second.x2 * first.x2 + second.x3 * first.x3);
double x1 = (second.x1 * first.s0 + second.s0 * first.x1) - (second.x3 * first.x2 - second.x2 * first.x3);
double x2 = (second.x2 * first.s0 + second.s0 * first.x2) - (second.x1 * first.x3 - second.x3 * first.x1);
double x3 = (second.x3 * first.s0 + second.s0 * first.x3) - (second.x2 * first.x1 - second.x1 * first.x2);
double squareModule = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
result.s0 = s0;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON)
{
return;
}
result.Normalize(squareModule);
}
public static void LoadIdle(out FP64Versor versor)
{
versor.s0 = 1.0;
versor.x1 = 0.0;
versor.x2 = 0.0;
versor.x3 = 0.0;
}
public static void LoadValues(double s0, double x1, double x2, double x3, out FP64Versor versor)
{
versor.s0 = s0;
versor.x1 = x1;
versor.x2 = x2;
versor.x3 = x3;
double squareModule = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (1.0 - FP64Utility.TWO_EPSYLON <= squareModule && squareModule <= 1.0 + FP64Utility.TWO_EPSYLON)
{
return;
}
versor.Normalize(squareModule);
}
}
}

View file

@ -1,40 +1,23 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 10 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public struct FP32Matrix2x2
public struct Matrix2x2FP32
{
public float r1c1 = 0.0f, r1c2 = 0.0f;
public float r2c1 = 0.0f, r2c2 = 0.0f;
public FP32Matrix2x2(float d1, float d2)
public Matrix2x2FP32(float d1, float d2)
{
this.r1c1 = d1;
this.r2c2 = d2;
}
public FP32Matrix2x2(in FP32Matrix2x2 matrix)
public Matrix2x2FP32(in Matrix2x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -43,7 +26,7 @@ namespace BasicGeometry
this.r2c2 = matrix.r2c2;
}
public FP32Matrix2x2(in FP64Matrix2x2 matrix)
public Matrix2x2FP32(in Matrix2x2FP64 matrix)
{
this.r1c1 = (float)matrix.r1c1;
this.r1c2 = (float)matrix.r1c2;
@ -59,8 +42,7 @@ namespace BasicGeometry
public readonly bool IsSingular()
{
float determinant = this.GetDeterminant();
return -FP32Utility.EPSYLON <= determinant && determinant <= FP32Utility.EPSYLON;
return UtilityFP32.IsZero(this.GetDeterminant());
}
public void Transpose()
@ -72,7 +54,7 @@ namespace BasicGeometry
{
float determinant = this.GetDeterminant();
if (-FP32Utility.EPSYLON <= determinant && determinant <= FP32Utility.EPSYLON)
if (UtilityFP32.IsZero(determinant))
{
return false;
}
@ -121,7 +103,7 @@ namespace BasicGeometry
this.r2c2 = d2;
}
public void SetValues(in FP32Matrix2x2 matrix)
public void Set(in Matrix2x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -130,7 +112,7 @@ namespace BasicGeometry
this.r2c2 = matrix.r2c2;
}
public void SetValues(in FP64Matrix2x2 matrix)
public void Set(in Matrix2x2FP64 matrix)
{
this.r1c1 = (float)matrix.r1c1;
this.r1c2 = (float)matrix.r1c2;
@ -139,14 +121,14 @@ namespace BasicGeometry
this.r2c2 = (float)matrix.r2c2;
}
public void SetTransposedOf(in FP32Matrix2x2 matrix)
public void SetTransposedOf(in Matrix2x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r2c2 = matrix.r2c2;
(this.r1c2, this.r2c1) = (matrix.r2c1, matrix.r1c2);
}
public void SetTransposedOf(in FP64Matrix2x2 matrix)
public void SetTransposedOf(in Matrix2x2FP64 matrix)
{
this.r1c1 = (float)matrix.r1c1;
this.r1c2 = (float)matrix.r2c1;
@ -155,11 +137,11 @@ namespace BasicGeometry
this.r2c2 = (float)matrix.r2c2;
}
public bool SetInvertedOf(in FP32Matrix2x2 matrix)
public bool SetInvertedOf(in Matrix2x2FP32 matrix)
{
float determinant = matrix.GetDeterminant();
if (-FP32Utility.EPSYLON <= determinant && determinant <= FP32Utility.EPSYLON)
if (-UtilityFP32.EPSYLON <= determinant && determinant <= UtilityFP32.EPSYLON)
{
return false;
}
@ -205,7 +187,7 @@ namespace BasicGeometry
this.r2c2 = r2;
}
public void AppendScaled(in FP32Matrix2x2 matrix, float scale)
public void AppendScaled(in Matrix2x2FP32 matrix, float scale)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
@ -214,7 +196,7 @@ namespace BasicGeometry
this.r2c2 += matrix.r2c2 * scale;
}
public static void Add(in FP32Matrix2x2 matrix1, in FP32Matrix2x2 matrix2, out FP32Matrix2x2 result)
public static void Add(in Matrix2x2FP32 matrix1, in Matrix2x2FP32 matrix2, out Matrix2x2FP32 result)
{
result.r1c1 = matrix1.r1c1 + matrix2.r1c1;
result.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -223,7 +205,7 @@ namespace BasicGeometry
result.r2c2 = matrix1.r2c2 + matrix2.r2c2;
}
public static void Subtract(in FP32Matrix2x2 minuend, in FP32Matrix2x2 subtrahend, out FP32Matrix2x2 difference)
public static void Subtract(in Matrix2x2FP32 minuend, in Matrix2x2FP32 subtrahend, out Matrix2x2FP32 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -232,7 +214,7 @@ namespace BasicGeometry
difference.r2c2 = minuend.r2c2 - subtrahend.r2c2;
}
public static void Multiply(in FP32Matrix2x2 multiplicand, float multiplier, out FP32Matrix2x2 product)
public static void Multiply(in Matrix2x2FP32 multiplicand, float multiplier, out Matrix2x2FP32 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -241,12 +223,12 @@ namespace BasicGeometry
product.r2c2 = multiplicand.r2c2 * multiplier;
}
public static void Divide(in FP32Matrix2x2 dividend, float divisor, out FP32Matrix2x2 quotient)
public static void Divide(in Matrix2x2FP32 dividend, float divisor, out Matrix2x2FP32 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetRightProduct(in FP32Matrix2x2 matrix, in FP32Vector2 vector, out FP32Vector2 result)
public static void GetRightProduct(in Matrix2x2FP32 matrix, in Vector2FP32 vector, out Vector2FP32 result)
{
float x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2;
float x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2;
@ -255,7 +237,7 @@ namespace BasicGeometry
result.x2 = x2;
}
public static void GetLeftProduct(in FP32Vector2 vector, in FP32Matrix2x2 matrix, out FP32Vector2 result)
public static void GetLeftProduct(in Vector2FP32 vector, in Matrix2x2FP32 matrix, out Vector2FP32 result)
{
float x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1;
float x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2;
@ -264,7 +246,7 @@ namespace BasicGeometry
result.x2 = x2;
}
public static void LoadZero(out FP32Matrix2x2 matrix)
public static void LoadZero(out Matrix2x2FP32 matrix)
{
matrix.r1c1 = 0.0f;
matrix.r1c2 = 0.0f;
@ -273,7 +255,7 @@ namespace BasicGeometry
matrix.r2c2 = 0.0f;
}
public static void LoadIdentity(out FP32Matrix2x2 matrix)
public static void LoadIdentity(out Matrix2x2FP32 matrix)
{
matrix.r1c1 = 1.0f;
matrix.r1c2 = 0.0f;
@ -282,7 +264,7 @@ namespace BasicGeometry
matrix.r2c2 = 1.0f;
}
public static void LoadDiagonal(float d1, float d2, out FP32Matrix2x2 matrix)
public static void LoadDiagonal(float d1, float d2, out Matrix2x2FP32 matrix)
{
matrix.r1c1 = d1;
matrix.r1c2 = 0.0f;

View file

@ -1,40 +1,22 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* Date: 10 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public struct FP64Matrix2x2
public struct Matrix2x2FP64
{
public double r1c1 = 0.0, r1c2 = 0.0;
public double r2c1 = 0.0, r2c2 = 0.0;
public FP64Matrix2x2(double d1, double d2)
public Matrix2x2FP64(double d1, double d2)
{
this.r1c1 = d1;
this.r2c2 = d2;
}
public FP64Matrix2x2(in FP64Matrix2x2 matrix)
public Matrix2x2FP64(in Matrix2x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -43,7 +25,7 @@ namespace BasicGeometry
this.r2c2 = matrix.r2c2;
}
public FP64Matrix2x2(in FP32Matrix2x2 matrix)
public Matrix2x2FP64(in Matrix2x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -59,8 +41,7 @@ namespace BasicGeometry
public readonly bool IsSingular()
{
double determinant = this.GetDeterminant();
return -FP64Utility.EPSYLON <= determinant && determinant <= FP64Utility.EPSYLON;
return UtilityFP64.IsZero(this.GetDeterminant());
}
public void Transpose()
@ -72,7 +53,7 @@ namespace BasicGeometry
{
double determinant = this.GetDeterminant();
if (-FP64Utility.EPSYLON <= determinant && determinant <= FP64Utility.EPSYLON)
if (UtilityFP64.IsZero(determinant))
{
return false;
}
@ -121,7 +102,7 @@ namespace BasicGeometry
this.r2c2 = d2;
}
public void SetValues(in FP64Matrix2x2 matrix)
public void Set(in Matrix2x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -130,7 +111,7 @@ namespace BasicGeometry
this.r2c2 = matrix.r2c2;
}
public void SetValues(in FP32Matrix2x2 matrix)
public void Set(in Matrix2x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -139,14 +120,14 @@ namespace BasicGeometry
this.r2c2 = matrix.r2c2;
}
public void SetTransposedOf(in FP64Matrix2x2 matrix)
public void SetTransposedOf(in Matrix2x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r2c2 = matrix.r2c2;
(this.r1c2, this.r2c1) = (matrix.r2c1, matrix.r1c2);
}
public void SetTransposedOf(in FP32Matrix2x2 matrix)
public void SetTransposedOf(in Matrix2x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -155,11 +136,11 @@ namespace BasicGeometry
this.r2c2 = matrix.r2c2;
}
public bool SetInvertedOf(in FP64Matrix2x2 matrix)
public bool SetInvertedOf(in Matrix2x2FP64 matrix)
{
double determinant = matrix.GetDeterminant();
if (-FP64Utility.EPSYLON <= determinant && determinant <= FP64Utility.EPSYLON)
if (UtilityFP64.IsZero(determinant))
{
return false;
}
@ -205,7 +186,7 @@ namespace BasicGeometry
this.r2c2 = r2;
}
public void AppendScaled(in FP64Matrix2x2 matrix, double scale)
public void AppendScaled(in Matrix2x2FP64 matrix, double scale)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
@ -214,7 +195,7 @@ namespace BasicGeometry
this.r2c2 += matrix.r2c2 * scale;
}
public static void Add(in FP64Matrix2x2 matrix1, in FP64Matrix2x2 matrix2, out FP64Matrix2x2 sum)
public static void Add(in Matrix2x2FP64 matrix1, in Matrix2x2FP64 matrix2, out Matrix2x2FP64 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -223,7 +204,7 @@ namespace BasicGeometry
sum.r2c2 = matrix1.r2c2 + matrix2.r2c2;
}
public static void Subtract(in FP64Matrix2x2 minuend, in FP64Matrix2x2 subtrahend, out FP64Matrix2x2 difference)
public static void Subtract(in Matrix2x2FP64 minuend, in Matrix2x2FP64 subtrahend, out Matrix2x2FP64 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -232,7 +213,7 @@ namespace BasicGeometry
difference.r2c2 = minuend.r2c2 - subtrahend.r2c2;
}
public static void Multiply(in FP64Matrix2x2 multiplicand, double multiplier, out FP64Matrix2x2 product)
public static void Multiply(in Matrix2x2FP64 multiplicand, double multiplier, out Matrix2x2FP64 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -241,12 +222,12 @@ namespace BasicGeometry
product.r2c2 = multiplicand.r2c2 * multiplier;
}
public static void Divide(in FP64Matrix2x2 dividend, double divisor, out FP64Matrix2x2 quotient)
public static void Divide(in Matrix2x2FP64 dividend, double divisor, out Matrix2x2FP64 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetRightProduct(in FP64Matrix2x2 matrix, in FP64Vector2 vector, out FP64Vector2 result)
public static void GetRightProduct(in Matrix2x2FP64 matrix, in Vector2FP64 vector, out Vector2FP64 result)
{
double x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2;
double x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2;
@ -255,7 +236,7 @@ namespace BasicGeometry
result.x2 = x2;
}
public static void GetLeftProduct(in FP64Vector2 vector, in FP64Matrix2x2 matrix, out FP64Vector2 result)
public static void GetLeftProduct(in Vector2FP64 vector, in Matrix2x2FP64 matrix, out Vector2FP64 result)
{
double x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1;
double x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2;
@ -264,7 +245,7 @@ namespace BasicGeometry
result.x2 = x2;
}
public static void LoadZero(out FP64Matrix2x2 matrix)
public static void LoadZero(out Matrix2x2FP64 matrix)
{
matrix.r1c1 = 0.0;
matrix.r1c2 = 0.0;
@ -273,7 +254,7 @@ namespace BasicGeometry
matrix.r2c2 = 0.0;
}
public static void LoadIdentity(out FP64Matrix2x2 matrix)
public static void LoadIdentity(out Matrix2x2FP64 matrix)
{
matrix.r1c1 = 1.0;
matrix.r1c2 = 0.0;
@ -282,7 +263,7 @@ namespace BasicGeometry
matrix.r2c2 = 1.0;
}
public static void LoadDiagonal(double d1, double d2, out FP64Matrix2x2 matrix)
public static void LoadDiagonal(double d1, double d2, out Matrix2x2FP64 matrix)
{
matrix.r1c1 = d1;
matrix.r1c2 = 0.0;

View file

@ -1,34 +1,17 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 11 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public struct FP32Matrix2x3
public struct Matrix2x3FP32
{
public float r1c1 = 0.0f, r1c2 = 0.0f;
public float r2c1 = 0.0f, r2c2 = 0.0f;
public float r3c1 = 0.0f, r3c2 = 0.0f;
public FP32Matrix2x3(in FP32Matrix2x3 matrix)
public Matrix2x3FP32(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -40,7 +23,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r3c2;
}
public FP32Matrix2x3(in FP64Matrix2x3 matrix)
public Matrix2x3FP32(in Matrix2x3FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r1c2;
@ -52,7 +35,7 @@ namespace BasicGeometry
this.r3c2 = (float) matrix.r3c2;
}
public FP32Matrix2x3(in FP32Matrix3x2 matrix)
public Matrix2x3FP32(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -64,7 +47,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r2c3;
}
public FP32Matrix2x3(in FP64Matrix3x2 matrix)
public Matrix2x3FP32(in Matrix3x2FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r2c1;
@ -88,7 +71,7 @@ namespace BasicGeometry
this.r3c2 = 0.0f;
}
public void SetValues(in FP32Matrix2x3 matrix)
public void SetValues(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -100,7 +83,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r3c2;
}
public void SetValues(in FP64Matrix2x3 matrix)
public void SetValues(in Matrix2x3FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r1c2;
@ -112,7 +95,7 @@ namespace BasicGeometry
this.r3c2 = (float) matrix.r3c2;
}
public void SetTransposed(in FP32Matrix3x2 matrix)
public void SetTransposed(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -124,7 +107,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r2c3;
}
public void SetTransposed(in FP64Matrix3x2 matrix)
public void SetTransposed(in Matrix3x2FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r2c1;
@ -168,7 +151,7 @@ namespace BasicGeometry
this.r3c2 = r3;
}
public void AppendScaled(in FP32Matrix2x3 matrix, float scale)
public void AppendScaled(in Matrix2x3FP32 matrix, float scale)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
@ -180,7 +163,7 @@ namespace BasicGeometry
this.r3c2 += matrix.r3c2 * scale;
}
public static void Add(in FP32Matrix2x3 matrix1, in FP32Matrix2x3 matrix2, out FP32Matrix2x3 sum)
public static void Add(in Matrix2x3FP32 matrix1, in Matrix2x3FP32 matrix2, out Matrix2x3FP32 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -192,7 +175,7 @@ namespace BasicGeometry
sum.r3c2 = matrix1.r3c2 + matrix2.r3c2;
}
public static void Subtract(in FP32Matrix2x3 minuend, in FP32Matrix2x3 subtrahend, out FP32Matrix2x3 difference)
public static void Subtract(in Matrix2x3FP32 minuend, in Matrix2x3FP32 subtrahend, out Matrix2x3FP32 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -204,7 +187,7 @@ namespace BasicGeometry
difference.r3c2 = minuend.r3c2 - subtrahend.r3c2;
}
public static void Multiply(in FP32Matrix2x3 multiplicand, float multiplier, out FP32Matrix2x3 product)
public static void Multiply(in Matrix2x3FP32 multiplicand, float multiplier, out Matrix2x3FP32 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -216,19 +199,19 @@ namespace BasicGeometry
product.r3c2 = multiplicand.r3c2 * multiplier;
}
public static void Divide(in FP32Matrix2x3 dividend, float divisor, out FP32Matrix2x3 quotient)
public static void Divide(in Matrix2x3FP32 dividend, float divisor, out Matrix2x3FP32 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetRightProduct(in FP32Matrix2x3 matrix, in FP32Vector2 vector, out FP32Vector3 result)
public static void GetRightProduct(in Matrix2x3FP32 matrix, in Vector2FP32 vector, out Vector3FP32 result)
{
result.x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2;
result.x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2;
result.x3 = matrix.r3c1 * vector.x1 + matrix.r3c2 * vector.x2;
}
public static void GetLeftProduct(in FP32Vector3 vector, in FP32Matrix2x3 matrix, out FP32Vector2 result)
public static void GetLeftProduct(in Vector3FP32 vector, in Matrix2x3FP32 matrix, out Vector2FP32 result)
{
result.x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1 + vector.x3 * matrix.r3c1;
result.x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2 + vector.x3 * matrix.r3c2;

View file

@ -1,34 +1,17 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 11 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public struct FP64Matrix2x3
public struct Matrix2x3FP64
{
public double r1c1 = 0.0, r1c2 = 0.0;
public double r2c1 = 0.0, r2c2 = 0.0;
public double r3c1 = 0.0, r3c2 = 0.0;
public FP64Matrix2x3(in FP64Matrix2x3 matrix)
public Matrix2x3FP64(in Matrix2x3FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -40,7 +23,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r3c2;
}
public FP64Matrix2x3(in FP32Matrix2x3 matrix)
public Matrix2x3FP64(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -52,7 +35,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r3c2;
}
public FP64Matrix2x3(in FP64Matrix3x2 matrix)
public Matrix2x3FP64(in Matrix3x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -64,7 +47,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r2c3;
}
public FP64Matrix2x3(in FP32Matrix3x2 matrix)
public Matrix2x3FP64(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -88,7 +71,7 @@ namespace BasicGeometry
this.r3c2 = 0.0;
}
public void SetValues(in FP64Matrix2x3 matrix)
public void SetValues(in Matrix2x3FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -100,7 +83,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r3c2;
}
public void SetValues(in FP32Matrix2x3 matrix)
public void SetValues(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -112,7 +95,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r3c2;
}
public void SetTransposed(in FP64Matrix3x2 matrix)
public void SetTransposed(in Matrix3x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -124,7 +107,7 @@ namespace BasicGeometry
this.r3c2 = matrix.r2c3;
}
public void SetTransposed(in FP32Matrix3x2 matrix)
public void SetTransposed(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -168,7 +151,7 @@ namespace BasicGeometry
this.r3c2 = r3;
}
public void AppendScaled(in FP64Matrix2x3 matrix, double scale)
public void AppendScaled(in Matrix2x3FP64 matrix, double scale)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
@ -180,7 +163,7 @@ namespace BasicGeometry
this.r3c2 += matrix.r3c2 * scale;
}
public static void Add(in FP64Matrix2x3 matrix1, in FP64Matrix2x3 matrix2, out FP64Matrix2x3 sum)
public static void Add(in Matrix2x3FP64 matrix1, in Matrix2x3FP64 matrix2, out Matrix2x3FP64 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -192,7 +175,7 @@ namespace BasicGeometry
sum.r3c2 = matrix1.r3c2 + matrix2.r3c2;
}
public static void Subtract(in FP64Matrix2x3 minuend, in FP64Matrix2x3 subtrahend, out FP64Matrix2x3 difference)
public static void Subtract(in Matrix2x3FP64 minuend, in Matrix2x3FP64 subtrahend, out Matrix2x3FP64 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -204,7 +187,7 @@ namespace BasicGeometry
difference.r3c2 = minuend.r3c2 - subtrahend.r3c2;
}
public static void Multiply(in FP64Matrix2x3 multiplicand, double multiplier, out FP64Matrix2x3 product)
public static void Multiply(in Matrix2x3FP64 multiplicand, double multiplier, out Matrix2x3FP64 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -216,19 +199,19 @@ namespace BasicGeometry
product.r3c2 = multiplicand.r3c2 * multiplier;
}
public static void Divide(in FP64Matrix2x3 dividend, double divisor, out FP64Matrix2x3 quotient)
public static void Divide(in Matrix2x3FP64 dividend, double divisor, out Matrix2x3FP64 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetRightProduct(in FP64Matrix2x3 matrix, in FP64Vector2 vector, out FP64Vector3 result)
public static void GetRightProduct(in Matrix2x3FP64 matrix, in Vector2FP64 vector, out Vector3FP64 result)
{
result.x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2;
result.x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2;
result.x3 = matrix.r3c1 * vector.x1 + matrix.r3c2 * vector.x2;
}
public static void GetLeftProduct(in FP64Vector3 vector, in FP64Matrix2x3 matrix, out FP64Vector2 result)
public static void GetLeftProduct(in Vector3FP64 vector, in Matrix2x3FP64 matrix, out Vector2FP64 result)
{
result.x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1 + vector.x3 * matrix.r3c1;
result.x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2 + vector.x3 * matrix.r3c2;

View file

@ -1,31 +1,16 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 11 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public struct FP32Matrix3x2
public struct Matrix3x2FP32
{
public float r1c1 = 0.0f, r1c2 = 0.0f, r1c3 = 0.0f;
public float r2c1 = 0.0f, r2c2 = 0.0f, r2c3 = 0.0f;
public FP32Matrix3x2(in FP32Matrix3x2 matrix)
public Matrix3x2FP32(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -36,7 +21,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c3;
}
public FP32Matrix3x2(in FP64Matrix3x2 matrix)
public Matrix3x2FP32(in Matrix3x2FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r1c2;
@ -47,7 +32,7 @@ namespace BasicGeometry
this.r2c3 = (float) matrix.r2c3;
}
public FP32Matrix3x2(in FP32Matrix2x3 matrix)
public Matrix3x2FP32(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -58,7 +43,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r3c2;
}
public FP32Matrix3x2(in FP64Matrix2x3 matrix)
public Matrix3x2FP32(in Matrix2x3FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r2c1;
@ -80,7 +65,7 @@ namespace BasicGeometry
this.r2c3 = 0.0f;
}
public void SetValues(in FP32Matrix3x2 matrix)
public void SetValues(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -91,7 +76,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c3;
}
public void SetValues(in FP64Matrix3x2 matrix)
public void SetValues(in Matrix3x2FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r1c2;
@ -102,7 +87,7 @@ namespace BasicGeometry
this.r2c3 = (float) matrix.r2c3;
}
public void SetTransposed(in FP32Matrix2x3 matrix)
public void SetTransposed(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -113,7 +98,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r3c2;
}
public void SetTransposed(in FP64Matrix2x3 matrix)
public void SetTransposed(in Matrix2x3FP64 matrix)
{
this.r1c1 = (float) matrix.r1c1;
this.r1c2 = (float) matrix.r2c1;
@ -156,7 +141,7 @@ namespace BasicGeometry
this.r2c3 = r2;
}
public void AppendScaled(in FP32Matrix3x2 matrix, float scale)
public void AppendScaled(in Matrix3x2FP32 matrix, float scale)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
@ -167,7 +152,7 @@ namespace BasicGeometry
this.r2c3 += matrix.r2c3 * scale;
}
public static void Add(in FP32Matrix3x2 matrix1, in FP32Matrix3x2 matrix2, out FP32Matrix3x2 sum)
public static void Add(in Matrix3x2FP32 matrix1, in Matrix3x2FP32 matrix2, out Matrix3x2FP32 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -178,7 +163,7 @@ namespace BasicGeometry
sum.r2c3 = matrix1.r2c3 + matrix2.r2c3;
}
public static void Subtract(in FP32Matrix3x2 minuend, in FP32Matrix3x2 subtrahend, out FP32Matrix3x2 difference)
public static void Subtract(in Matrix3x2FP32 minuend, in Matrix3x2FP32 subtrahend, out Matrix3x2FP32 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -189,7 +174,7 @@ namespace BasicGeometry
difference.r2c3 = minuend.r2c3 - subtrahend.r2c3;
}
public static void Multiply(in FP32Matrix3x2 multiplicand, float multiplier, out FP32Matrix3x2 product)
public static void Multiply(in Matrix3x2FP32 multiplicand, float multiplier, out Matrix3x2FP32 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -200,18 +185,18 @@ namespace BasicGeometry
product.r2c3 = multiplicand.r2c3 * multiplier;
}
public static void Divide(in FP32Matrix3x2 dividend, float divisor, out FP32Matrix3x2 quotient)
public static void Divide(in Matrix3x2FP32 dividend, float divisor, out Matrix3x2FP32 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetRightProduct(in FP32Matrix3x2 matrix, in FP32Vector3 vector, out FP32Vector2 result)
public static void GetRightProduct(in Matrix3x2FP32 matrix, in Vector3FP32 vector, out Vector2FP32 result)
{
result.x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2 + matrix.r1c3 * vector.x3;
result.x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2 + matrix.r2c3 * vector.x3;
}
public static void GetLeftProduct(in FP32Vector2 vector, in FP32Matrix3x2 matrix, out FP32Vector3 result)
public static void GetLeftProduct(in Vector2FP32 vector, in Matrix3x2FP32 matrix, out Vector3FP32 result)
{
result.x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1;
result.x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2;

View file

@ -1,33 +1,16 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 11 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public struct FP64Matrix3x2
public struct Matrix3x2FP64
{
public double r1c1 = 0.0, r1c2 = 0.0, r1c3 = 0.0;
public double r2c1 = 0.0, r2c2 = 0.0, r2c3 = 0.0;
public FP64Matrix3x2(in FP64Matrix3x2 matrix)
public Matrix3x2FP64(in Matrix3x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -38,7 +21,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c3;
}
public FP64Matrix3x2(in FP32Matrix3x2 matrix)
public Matrix3x2FP64(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -49,7 +32,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c3;
}
public FP64Matrix3x2(in FP64Matrix2x3 matrix)
public Matrix3x2FP64(in Matrix2x3FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -60,7 +43,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c2;
}
public FP64Matrix3x2(in FP32Matrix2x3 matrix)
public Matrix3x2FP64(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -83,7 +66,7 @@ namespace BasicGeometry
}
public void SetValues(in FP64Matrix3x2 matrix)
public void SetValues(in Matrix3x2FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -94,7 +77,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c3;
}
public void SetValues(in FP32Matrix3x2 matrix)
public void SetValues(in Matrix3x2FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -105,7 +88,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c3;
}
public void SetTransposed(in FP64Matrix2x3 matrix)
public void SetTransposed(in Matrix2x3FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -116,7 +99,7 @@ namespace BasicGeometry
this.r2c3 = matrix.r2c2;
}
public void SetTransposed(in FP32Matrix2x3 matrix)
public void SetTransposed(in Matrix2x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r2c1;
@ -159,7 +142,7 @@ namespace BasicGeometry
this.r2c3 = r2;
}
public void AppendScaled(in FP64Matrix3x2 matrix, double scale)
public void AppendScaled(in Matrix3x2FP64 matrix, double scale)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
@ -170,7 +153,7 @@ namespace BasicGeometry
this.r2c3 += matrix.r2c3 * scale;
}
public static void Add(in FP64Matrix3x2 matrix1, in FP64Matrix3x2 matrix2, out FP64Matrix3x2 sum)
public static void Add(in Matrix3x2FP64 matrix1, in Matrix3x2FP64 matrix2, out Matrix3x2FP64 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -181,7 +164,7 @@ namespace BasicGeometry
sum.r2c3 = matrix1.r2c3 + matrix2.r2c3;
}
public static void Subtract(in FP64Matrix3x2 minuend, in FP64Matrix3x2 subtrahend, out FP64Matrix3x2 difference)
public static void Subtract(in Matrix3x2FP64 minuend, in Matrix3x2FP64 subtrahend, out Matrix3x2FP64 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -192,7 +175,7 @@ namespace BasicGeometry
difference.r2c3 = minuend.r2c3 - subtrahend.r2c3;
}
public static void Multiply(in FP64Matrix3x2 multiplicand, double multiplier, out FP64Matrix3x2 product)
public static void Multiply(in Matrix3x2FP64 multiplicand, double multiplier, out Matrix3x2FP64 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -203,18 +186,18 @@ namespace BasicGeometry
product.r2c3 = multiplicand.r2c3 * multiplier;
}
public static void Divide(in FP64Matrix3x2 dividend, double divisor, out FP64Matrix3x2 quotient)
public static void Divide(in Matrix3x2FP64 dividend, double divisor, out Matrix3x2FP64 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetRightProduct(in FP64Matrix3x2 matrix, in FP64Vector3 vector, out FP64Vector2 result)
public static void GetRightProduct(in Matrix3x2FP64 matrix, in Vector3FP64 vector, out Vector2FP64 result)
{
result.x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2 + matrix.r1c3 * vector.x3;
result.x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2 + matrix.r2c3 * vector.x3;
}
public static void GetLeftProduct(in FP64Vector2 vector, in FP64Matrix3x2 matrix, out FP64Vector3 result)
public static void GetLeftProduct(in Vector2FP64 vector, in Matrix3x2FP64 matrix, out Vector3FP64 result)
{
result.x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1;
result.x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2;

View file

@ -1,42 +1,25 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 10 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public struct FP32Matrix3x3
public struct Matrix3x3FP32
{
public float r1c1 = 0.0f, r1c2 = 0.0f, r1c3 = 0.0f;
public float r2c1 = 0.0f, r2c2 = 0.0f, r2c3 = 0.0f;
public float r3c1 = 0.0f, r3c2 = 0.0f, r3c3 = 0.0f;
public FP32Matrix3x3(float d1, float d2, float d3)
public Matrix3x3FP32(float d1, float d2, float d3)
{
this.r1c1 = d1;
this.r2c2 = d2;
this.r3c3 = d3;
}
public FP32Matrix3x3(in FP32Matrix3x3 matrix)
public Matrix3x3FP32(in Matrix3x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -51,7 +34,7 @@ namespace BasicGeometry
this.r3c3 = matrix.r3c3;
}
public FP32Matrix3x3(in FP64Matrix3x3 matrix)
public Matrix3x3FP32(in Matrix3x3FP64 matrix)
{
this.r1c1 = (float)matrix.r1c1;
this.r1c2 = (float)matrix.r1c2;
@ -75,8 +58,7 @@ namespace BasicGeometry
public readonly bool IsSingular()
{
float determinant = this.GetDeterminant();
return -FP32Utility.EPSYLON <= determinant && determinant <= FP32Utility.EPSYLON;
return UtilityFP32.IsZero(this.GetDeterminant());
}
public void Transpose()
@ -90,7 +72,8 @@ namespace BasicGeometry
{
float determinant = this.GetDeterminant();
if (-FP32Utility.EPSYLON <= determinant && determinant <= FP32Utility.EPSYLON) {
if (UtilityFP32.IsZero(determinant))
{
return false;
}
@ -168,7 +151,7 @@ namespace BasicGeometry
this.r2c3 = d3;
}
public void SetValues(in FP32Matrix3x3 matrix)
public void Set(in Matrix3x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -183,7 +166,7 @@ namespace BasicGeometry
this.r3c3 = matrix.r3c3;
}
public void SetValues(in FP64Matrix3x3 matrix)
public void Set(in Matrix3x3FP64 matrix)
{
this.r1c1 = (float)matrix.r1c1;
this.r1c2 = (float)matrix.r1c2;
@ -198,69 +181,6 @@ namespace BasicGeometry
this.r3c3 = (float)matrix.r3c3;
}
public void SetTransposedOf(in FP32Matrix3x3 matrix)
{
this.r1c1 = matrix.r1c1;
this.r2c2 = matrix.r2c2;
this.r3c3 = matrix.r3c3;
(this.r1c2, this.r2c1) = (matrix.r2c1, matrix.r1c2);
(this.r1c3, this.r3c1) = (matrix.r3c1, matrix.r1c3);
(this.r2c3, this.r3c2) = (matrix.r3c2, matrix.r2c3);
}
public void SetTransposedOf(in FP64Matrix3x3 matrix)
{
this.r1c1 = (float)matrix.r1c1;
this.r1c2 = (float)matrix.r2c1;
this.r1c3 = (float)matrix.r3c1;
this.r2c1 = (float)matrix.r1c2;
this.r2c2 = (float)matrix.r2c2;
this.r2c3 = (float)matrix.r3c2;
this.r3c1 = (float)matrix.r1c3;
this.r3c2 = (float)matrix.r2c3;
this.r3c3 = (float)matrix.r3c3;
}
public bool SetInvertedOf(in FP32Matrix3x3 matrix)
{
float determinant = matrix.GetDeterminant();
if (-FP32Utility.EPSYLON <= determinant && determinant <= FP32Utility.EPSYLON) {
return false;
}
float r1c1 = matrix.r2c2 * matrix.r3c3 - matrix.r2c3 * matrix.r3c2;
float r1c2 = matrix.r1c3 * matrix.r3c2 - matrix.r1c2 * matrix.r3c3;
float r1c3 = matrix.r1c2 * matrix.r2c3 - matrix.r1c3 * matrix.r2c2;
float r2c1 = matrix.r2c3 * matrix.r3c1 - matrix.r2c1 * matrix.r3c3;
float r2c2 = matrix.r1c1 * matrix.r3c3 - matrix.r1c3 * matrix.r3c1;
float r2c3 = matrix.r1c3 * matrix.r2c1 - matrix.r1c1 * matrix.r2c3;
float r3c1 = matrix.r2c1 * matrix.r3c2 - matrix.r2c2 * matrix.r3c1;
float r3c2 = matrix.r1c2 * matrix.r3c1 - matrix.r1c1 * matrix.r3c2;
float r3c3 = matrix.r1c1 * matrix.r2c2 - matrix.r1c2 * matrix.r2c1;
float mutiplier = 1.0f / determinant;
this.r1c1 = r1c1 * mutiplier;
this.r1c2 = r1c2 * mutiplier;
this.r1c3 = r1c3 * mutiplier;
this.r2c1 = r2c1 * mutiplier;
this.r2c2 = r2c2 * mutiplier;
this.r2c3 = r2c3 * mutiplier;
this.r3c1 = r3c1 * mutiplier;
this.r3c2 = r3c2 * mutiplier;
this.r3c3 = r3c3 * mutiplier;
return true;
}
public void SetRow1(float c1, float c2, float c3)
{
this.r1c1 = c1;
@ -303,22 +223,56 @@ namespace BasicGeometry
this.r3c3 = r3;
}
public void AppendScaled(in FP32Matrix3x3 matrix, float scale)
public static void MakeTransposed(in Matrix3x3FP32 matrix, out Matrix3x3FP32 transposed)
{
this.r1c1 += matrix.r1c1* scale;
this.r1c2 += matrix.r1c2* scale;
this.r1c3 += matrix.r1c3* scale;
transposed.r1c1 = matrix.r1c1;
transposed.r2c2 = matrix.r2c2;
transposed.r3c3 = matrix.r3c3;
this.r2c1 += matrix.r2c1* scale;
this.r2c2 += matrix.r2c2* scale;
this.r2c3 += matrix.r2c3* scale;
this.r3c1 += matrix.r3c1* scale;
this.r3c2 += matrix.r3c2* scale;
this.r3c3 += matrix.r3c3* scale;
(transposed.r1c2, transposed.r2c1) = (matrix.r2c1, matrix.r1c2);
(transposed.r1c3, transposed.r3c1) = (matrix.r3c1, matrix.r1c3);
(transposed.r2c3, transposed.r3c2) = (matrix.r3c2, matrix.r2c3);
}
public static void Add(in FP32Matrix3x3 matrix1, in FP32Matrix3x3 matrix2, out FP32Matrix3x3 sum)
public static bool MakeInverted(in Matrix3x3FP32 matrix, out Matrix3x3FP32 inverted)
{
float determinant = matrix.GetDeterminant();
if (UtilityFP32.IsZero(determinant)) {
LoadZero(out inverted);
return false;
}
float r1c1 = matrix.r2c2 * matrix.r3c3 - matrix.r2c3 * matrix.r3c2;
float r1c2 = matrix.r1c3 * matrix.r3c2 - matrix.r1c2 * matrix.r3c3;
float r1c3 = matrix.r1c2 * matrix.r2c3 - matrix.r1c3 * matrix.r2c2;
float r2c1 = matrix.r2c3 * matrix.r3c1 - matrix.r2c1 * matrix.r3c3;
float r2c2 = matrix.r1c1 * matrix.r3c3 - matrix.r1c3 * matrix.r3c1;
float r2c3 = matrix.r1c3 * matrix.r2c1 - matrix.r1c1 * matrix.r2c3;
float r3c1 = matrix.r2c1 * matrix.r3c2 - matrix.r2c2 * matrix.r3c1;
float r3c2 = matrix.r1c2 * matrix.r3c1 - matrix.r1c1 * matrix.r3c2;
float r3c3 = matrix.r1c1 * matrix.r2c2 - matrix.r1c2 * matrix.r2c1;
float mutiplier = 1.0f / determinant;
inverted.r1c1 = r1c1 * mutiplier;
inverted.r1c2 = r1c2 * mutiplier;
inverted.r1c3 = r1c3 * mutiplier;
inverted.r2c1 = r2c1 * mutiplier;
inverted.r2c2 = r2c2 * mutiplier;
inverted.r2c3 = r2c3 * mutiplier;
inverted.r3c1 = r3c1 * mutiplier;
inverted.r3c2 = r3c2 * mutiplier;
inverted.r3c3 = r3c3 * mutiplier;
return true;
}
public static void Add(in Matrix3x3FP32 matrix1, in Matrix3x3FP32 matrix2, out Matrix3x3FP32 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -333,7 +287,22 @@ namespace BasicGeometry
sum.r3c3 = matrix1.r3c3 + matrix2.r3c3;
}
public static void Subtract(in FP32Matrix3x3 minuend, in FP32Matrix3x3 subtrahend, out FP32Matrix3x3 difference)
public static void AddScaled(in Matrix3x3FP32 basicMatrix, in Matrix3x3FP32 scalableMatrix, float scale, out Matrix3x3FP32 sum)
{
sum.r1c1 = basicMatrix.r1c1 + scalableMatrix.r1c1 * scale;
sum.r1c2 = basicMatrix.r1c2 + scalableMatrix.r1c2 * scale;
sum.r1c3 = basicMatrix.r1c3 + scalableMatrix.r1c3 * scale;
sum.r2c1 = basicMatrix.r2c1 + scalableMatrix.r2c1 * scale;
sum.r2c2 = basicMatrix.r2c2 + scalableMatrix.r2c2 * scale;
sum.r2c3 = basicMatrix.r2c3 + scalableMatrix.r2c3 * scale;
sum.r3c1 = basicMatrix.r3c1 + scalableMatrix.r3c1 * scale;
sum.r3c2 = basicMatrix.r3c2 + scalableMatrix.r3c2 * scale;
sum.r3c3 = basicMatrix.r3c3 + scalableMatrix.r3c3 * scale;
}
public static void Subtract(in Matrix3x3FP32 minuend, in Matrix3x3FP32 subtrahend, out Matrix3x3FP32 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -348,7 +317,7 @@ namespace BasicGeometry
difference.r3c3 = minuend.r3c3 - subtrahend.r3c3;
}
public static void Multiply(in FP32Matrix3x3 multiplicand, float multiplier, out FP32Matrix3x3 product)
public static void Multiply(in Matrix3x3FP32 multiplicand, float multiplier, out Matrix3x3FP32 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -363,12 +332,12 @@ namespace BasicGeometry
product.r3c3 = multiplicand.r3c3 * multiplier;
}
public static void Divide(in FP32Matrix3x3 dividend, float divisor, out FP32Matrix3x3 quotient)
public static void Divide(in Matrix3x3FP32 dividend, float divisor, out Matrix3x3FP32 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetRightProduct(in FP32Matrix3x3 matrix, in FP32Vector3 vector, out FP32Vector3 result)
public static void RightProduct(in Matrix3x3FP32 matrix, in Vector3FP32 vector, out Vector3FP32 result)
{
float x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2 + matrix.r1c3 * vector.x3;
float x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2 + matrix.r2c3 * vector.x3;
@ -379,7 +348,7 @@ namespace BasicGeometry
result.x3 = x3;
}
public static void GetLeftProduct(in FP32Vector3 vector, in FP32Matrix3x3 matrix, out FP32Vector3 result)
public static void LeftProduct(in Vector3FP32 vector, in Matrix3x3FP32 matrix, out Vector3FP32 result)
{
float x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1 + vector.x3 * matrix.r3c1;
float x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2 + vector.x3 * matrix.r3c2;
@ -390,7 +359,7 @@ namespace BasicGeometry
result.x3 = x3;
}
public static void LoadZero(out FP32Matrix3x3 matrix)
public static void LoadZero(out Matrix3x3FP32 matrix)
{
matrix.r1c1 = 0.0f;
matrix.r1c2 = 0.0f;
@ -405,7 +374,7 @@ namespace BasicGeometry
matrix.r3c3 = 0.0f;
}
public static void LoadIdentity(out FP32Matrix3x3 matrix)
public static void LoadIdentity(out Matrix3x3FP32 matrix)
{
matrix.r1c1 = 1.0f;
matrix.r1c2 = 0.0f;
@ -420,7 +389,7 @@ namespace BasicGeometry
matrix.r3c3 = 1.0f;
}
public static void LoadDiagonal(float d1, float d2, float d3, out FP32Matrix3x3 matrix)
public static void LoadDiagonal(float d1, float d2, float d3, out Matrix3x3FP32 matrix)
{
matrix.r1c1 = d1;
matrix.r1c2 = 0.0f;

View file

@ -1,42 +1,25 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 10 Feb 2019
*/
namespace BasicGeometry
namespace BGC
{
public struct FP64Matrix3x3
public struct Matrix3x3FP64
{
public double r1c1 = 0.0, r1c2 = 0.0, r1c3 = 0.0;
public double r2c1 = 0.0, r2c2 = 0.0, r2c3 = 0.0;
public double r3c1 = 0.0, r3c2 = 0.0, r3c3 = 0.0;
public FP64Matrix3x3(double d1, double d2, double d3)
public Matrix3x3FP64(double d1, double d2, double d3)
{
this.r1c1 = d1;
this.r2c2 = d2;
this.r3c3 = d3;
}
public FP64Matrix3x3(in FP64Matrix3x3 matrix)
public Matrix3x3FP64(in Matrix3x3FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -51,7 +34,7 @@ namespace BasicGeometry
this.r3c3 = matrix.r3c3;
}
public FP64Matrix3x3(in FP32Matrix3x3 matrix)
public Matrix3x3FP64(in Matrix3x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -75,8 +58,7 @@ namespace BasicGeometry
public readonly bool IsSingular()
{
double determinant = this.GetDeterminant();
return -FP64Utility.EPSYLON <= determinant && determinant <= FP64Utility.EPSYLON;
return UtilityFP64.IsZero(this.GetDeterminant());
}
public void Transpose()
@ -90,7 +72,8 @@ namespace BasicGeometry
{
double determinant = this.GetDeterminant();
if (-FP64Utility.EPSYLON <= determinant && determinant <= FP64Utility.EPSYLON) {
if (UtilityFP64.IsZero(determinant))
{
return false;
}
@ -168,7 +151,7 @@ namespace BasicGeometry
this.r2c3 = d3;
}
public void SetValues(FP64Matrix3x3 matrix)
public void Set(Matrix3x3FP64 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -183,7 +166,7 @@ namespace BasicGeometry
this.r3c3 = matrix.r3c3;
}
public void SetValues(FP32Matrix3x3 matrix)
public void Set(Matrix3x3FP32 matrix)
{
this.r1c1 = matrix.r1c1;
this.r1c2 = matrix.r1c2;
@ -198,65 +181,6 @@ namespace BasicGeometry
this.r3c3 = matrix.r3c3;
}
public void SetTransposedOf(in FP64Matrix3x3 matrix)
{
this.r1c1 = matrix.r1c1;
this.r2c2 = matrix.r2c2;
this.r3c3 = matrix.r3c3;
(this.r1c2, this.r2c1) = (matrix.r2c1, matrix.r1c2);
(this.r1c3, this.r3c1) = (matrix.r3c1, matrix.r1c3);
(this.r2c3, this.r3c2) = (matrix.r3c2, matrix.r2c3);
}
public void SetTransposedOf(in FP32Matrix3x3 matrix)
{
this.r1c1 = matrix.r1c1;
this.r2c2 = matrix.r2c2;
this.r3c3 = matrix.r3c3;
(this.r1c2, this.r2c1) = (matrix.r2c1, matrix.r1c2);
(this.r1c3, this.r3c1) = (matrix.r3c1, matrix.r1c3);
(this.r2c3, this.r3c2) = (matrix.r3c2, matrix.r2c3);
}
public bool SetInvertedOf(in FP64Matrix3x3 matrix)
{
double determinant = matrix.GetDeterminant();
if (-FP64Utility.EPSYLON <= determinant && determinant <= FP64Utility.EPSYLON) {
return false;
}
double r1c1 = matrix.r2c2 * matrix.r3c3 - matrix.r2c3 * matrix.r3c2;
double r1c2 = matrix.r1c3 * matrix.r3c2 - matrix.r1c2 * matrix.r3c3;
double r1c3 = matrix.r1c2 * matrix.r2c3 - matrix.r1c3 * matrix.r2c2;
double r2c1 = matrix.r2c3 * matrix.r3c1 - matrix.r2c1 * matrix.r3c3;
double r2c2 = matrix.r1c1 * matrix.r3c3 - matrix.r1c3 * matrix.r3c1;
double r2c3 = matrix.r1c3 * matrix.r2c1 - matrix.r1c1 * matrix.r2c3;
double r3c1 = matrix.r2c1 * matrix.r3c2 - matrix.r2c2 * matrix.r3c1;
double r3c2 = matrix.r1c2 * matrix.r3c1 - matrix.r1c1 * matrix.r3c2;
double r3c3 = matrix.r1c1 * matrix.r2c2 - matrix.r1c2 * matrix.r2c1;
double mutiplier = 1.0 / determinant;
this.r1c1 = r1c1 * mutiplier;
this.r1c2 = r1c2 * mutiplier;
this.r1c3 = r1c3 * mutiplier;
this.r2c1 = r2c1 * mutiplier;
this.r2c2 = r2c2 * mutiplier;
this.r2c3 = r2c3 * mutiplier;
this.r3c1 = r3c1 * mutiplier;
this.r3c2 = r3c2 * mutiplier;
this.r3c3 = r3c3 * mutiplier;
return true;
}
public void SetRow1(double c1, double c2, double c3)
{
this.r1c1 = c1;
@ -299,22 +223,56 @@ namespace BasicGeometry
this.r3c3 = r3;
}
public void AppendScaled(in FP64Matrix3x3 matrix, double scale)
public static void GetTransposed(in Matrix3x3FP64 matrix, out Matrix3x3FP64 transposed)
{
this.r1c1 += matrix.r1c1 * scale;
this.r1c2 += matrix.r1c2 * scale;
this.r1c3 += matrix.r1c3 * scale;
transposed.r1c1 = matrix.r1c1;
transposed.r2c2 = matrix.r2c2;
transposed.r3c3 = matrix.r3c3;
this.r2c1 += matrix.r2c1 * scale;
this.r2c2 += matrix.r2c2 * scale;
this.r2c3 += matrix.r2c3 * scale;
this.r3c1 += matrix.r3c1 * scale;
this.r3c2 += matrix.r3c2 * scale;
this.r3c3 += matrix.r3c3 * scale;
(transposed.r1c2, transposed.r2c1) = (matrix.r2c1, matrix.r1c2);
(transposed.r1c3, transposed.r3c1) = (matrix.r3c1, matrix.r1c3);
(transposed.r2c3, transposed.r3c2) = (matrix.r3c2, matrix.r2c3);
}
public static void Add(in FP64Matrix3x3 matrix1, in FP64Matrix3x3 matrix2, out FP64Matrix3x3 sum)
public static bool GetInverted(in Matrix3x3FP64 matrix, out Matrix3x3FP64 inverted)
{
double determinant = matrix.GetDeterminant();
if (UtilityFP64.IsZero(determinant)) {
LoadZero(out inverted);
return false;
}
double r1c1 = matrix.r2c2 * matrix.r3c3 - matrix.r2c3 * matrix.r3c2;
double r1c2 = matrix.r1c3 * matrix.r3c2 - matrix.r1c2 * matrix.r3c3;
double r1c3 = matrix.r1c2 * matrix.r2c3 - matrix.r1c3 * matrix.r2c2;
double r2c1 = matrix.r2c3 * matrix.r3c1 - matrix.r2c1 * matrix.r3c3;
double r2c2 = matrix.r1c1 * matrix.r3c3 - matrix.r1c3 * matrix.r3c1;
double r2c3 = matrix.r1c3 * matrix.r2c1 - matrix.r1c1 * matrix.r2c3;
double r3c1 = matrix.r2c1 * matrix.r3c2 - matrix.r2c2 * matrix.r3c1;
double r3c2 = matrix.r1c2 * matrix.r3c1 - matrix.r1c1 * matrix.r3c2;
double r3c3 = matrix.r1c1 * matrix.r2c2 - matrix.r1c2 * matrix.r2c1;
double mutiplier = 1.0 / determinant;
inverted.r1c1 = r1c1 * mutiplier;
inverted.r1c2 = r1c2 * mutiplier;
inverted.r1c3 = r1c3 * mutiplier;
inverted.r2c1 = r2c1 * mutiplier;
inverted.r2c2 = r2c2 * mutiplier;
inverted.r2c3 = r2c3 * mutiplier;
inverted.r3c1 = r3c1 * mutiplier;
inverted.r3c2 = r3c2 * mutiplier;
inverted.r3c3 = r3c3 * mutiplier;
return true;
}
public static void Add(in Matrix3x3FP64 matrix1, in Matrix3x3FP64 matrix2, out Matrix3x3FP64 sum)
{
sum.r1c1 = matrix1.r1c1 + matrix2.r1c1;
sum.r1c2 = matrix1.r1c2 + matrix2.r1c2;
@ -329,7 +287,22 @@ namespace BasicGeometry
sum.r3c3 = matrix1.r3c3 + matrix2.r3c3;
}
public static void Subtract(in FP64Matrix3x3 minuend, in FP64Matrix3x3 subtrahend, out FP64Matrix3x3 difference)
public static void AddScaled(in Matrix3x3FP64 basicMatrix, in Matrix3x3FP64 scalableMatrix, double scale, out Matrix3x3FP64 sum)
{
sum.r1c1 = basicMatrix.r1c1 + scalableMatrix.r1c1 * scale;
sum.r1c2 = basicMatrix.r1c2 + scalableMatrix.r1c2 * scale;
sum.r1c3 = basicMatrix.r1c3 + scalableMatrix.r1c3 * scale;
sum.r2c1 = basicMatrix.r2c1 + scalableMatrix.r2c1 * scale;
sum.r2c2 = basicMatrix.r2c2 + scalableMatrix.r2c2 * scale;
sum.r2c3 = basicMatrix.r2c3 + scalableMatrix.r2c3 * scale;
sum.r3c1 = basicMatrix.r3c1 + scalableMatrix.r3c1 * scale;
sum.r3c2 = basicMatrix.r3c2 + scalableMatrix.r3c2 * scale;
sum.r3c3 = basicMatrix.r3c3 + scalableMatrix.r3c3 * scale;
}
public static void Subtract(in Matrix3x3FP64 minuend, in Matrix3x3FP64 subtrahend, out Matrix3x3FP64 difference)
{
difference.r1c1 = minuend.r1c1 - subtrahend.r1c1;
difference.r1c2 = minuend.r1c2 - subtrahend.r1c2;
@ -344,7 +317,7 @@ namespace BasicGeometry
difference.r3c3 = minuend.r3c3 - subtrahend.r3c3;
}
public static void Multiply(in FP64Matrix3x3 multiplicand, double multiplier, out FP64Matrix3x3 product)
public static void Multiply(in Matrix3x3FP64 multiplicand, double multiplier, out Matrix3x3FP64 product)
{
product.r1c1 = multiplicand.r1c1 * multiplier;
product.r1c2 = multiplicand.r1c2 * multiplier;
@ -359,12 +332,12 @@ namespace BasicGeometry
product.r3c3 = multiplicand.r3c3 * multiplier;
}
public static void Divide(in FP64Matrix3x3 dividend, double divisor, out FP64Matrix3x3 quotient)
public static void Divide(in Matrix3x3FP64 dividend, double divisor, out Matrix3x3FP64 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetRightProduct(in FP64Matrix3x3 matrix, in FP64Vector3 vector, out FP64Vector3 result)
public static void RightProduct(in Matrix3x3FP64 matrix, in Vector3FP64 vector, out Vector3FP64 result)
{
double x1 = matrix.r1c1 * vector.x1 + matrix.r1c2 * vector.x2 + matrix.r1c3 * vector.x3;
double x2 = matrix.r2c1 * vector.x1 + matrix.r2c2 * vector.x2 + matrix.r2c3 * vector.x3;
@ -375,7 +348,7 @@ namespace BasicGeometry
result.x3 = x3;
}
public static void GetLeftProduct(in FP64Vector3 vector, in FP64Matrix3x3 matrix, out FP64Vector3 result)
public static void LeftProduct(in Vector3FP64 vector, in Matrix3x3FP64 matrix, out Vector3FP64 result)
{
double x1 = vector.x1 * matrix.r1c1 + vector.x2 * matrix.r2c1 + vector.x3 * matrix.r3c1;
double x2 = vector.x1 * matrix.r1c2 + vector.x2 * matrix.r2c2 + vector.x3 * matrix.r3c2;
@ -386,7 +359,7 @@ namespace BasicGeometry
result.x3 = x3;
}
public static void LoadZero(out FP64Matrix3x3 matrix)
public static void LoadZero(out Matrix3x3FP64 matrix)
{
matrix.r1c1 = 0.0;
matrix.r1c2 = 0.0;
@ -401,7 +374,7 @@ namespace BasicGeometry
matrix.r3c3 = 0.0;
}
public static void LoadIdentity(out FP64Matrix3x3 matrix)
public static void LoadIdentity(out Matrix3x3FP64 matrix)
{
matrix.r1c1 = 1.0;
matrix.r1c2 = 0.0;
@ -416,7 +389,7 @@ namespace BasicGeometry
matrix.r3c3 = 1.0;
}
public static void LoadDiagonal(double d1, double d2, double d3, out FP64Matrix3x3 matrix)
public static void LoadDiagonal(double d1, double d2, double d3, out Matrix3x3FP64 matrix)
{
matrix.r1c1 = d1;
matrix.r1c2 = 0.0;

View file

@ -1,30 +1,14 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 11 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP32MatrixProduct
public class MatrixProductFP32
{
public static void Get2x2At2x2(in FP32Matrix2x2 left, in FP32Matrix2x2 right, out FP32Matrix2x2 product)
public static void Get2x2At2x2(in Matrix2x2FP32 left, in Matrix2x2FP32 right, out Matrix2x2FP32 product)
{
float r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
float r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -39,7 +23,7 @@ namespace BasicGeometry
product.r2c2 = r2c2;
}
public static void Get2x2At3x2(in FP32Matrix2x2 left, in FP32Matrix3x2 right, out FP32Matrix3x2 product)
public static void Get2x2At3x2(in Matrix2x2FP32 left, in Matrix3x2FP32 right, out Matrix3x2FP32 product)
{
float r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
float r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -58,7 +42,7 @@ namespace BasicGeometry
product.r2c3 = r2c3;
}
public static void Get2x3At2x2(in FP32Matrix2x3 left, in FP32Matrix2x2 right, out FP32Matrix2x3 product)
public static void Get2x3At2x2(in Matrix2x3FP32 left, in Matrix2x2FP32 right, out Matrix2x3FP32 product)
{
float r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
float r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -79,7 +63,7 @@ namespace BasicGeometry
product.r3c2 = r3c2;
}
public static void Get2x3At3x2(in FP32Matrix2x3 left, in FP32Matrix3x2 right, out FP32Matrix3x3 product)
public static void Get2x3At3x2(in Matrix2x3FP32 left, in Matrix3x2FP32 right, out Matrix3x3FP32 product)
{
product.r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
product.r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -94,7 +78,7 @@ namespace BasicGeometry
product.r3c3 = left.r3c1 * right.r1c2 + left.r3c2 * right.r2c3;
}
public static void Get3x2At3x3(in FP32Matrix3x2 left, in FP32Matrix3x3 right, out FP32Matrix3x2 product)
public static void Get3x2At3x3(in Matrix3x2FP32 left, in Matrix3x3FP32 right, out Matrix3x2FP32 product)
{
float r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
float r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;
@ -113,7 +97,7 @@ namespace BasicGeometry
product.r2c3 = r2c3;
}
public static void Get3x2At2x3(in FP32Matrix3x2 left, in FP32Matrix2x3 right, out FP32Matrix2x2 product)
public static void Get3x2At2x3(in Matrix3x2FP32 left, in Matrix2x3FP32 right, out Matrix2x2FP32 product)
{
product.r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
product.r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;
@ -122,7 +106,7 @@ namespace BasicGeometry
product.r2c2 = left.r2c1 * right.r1c2 + left.r2c2 * right.r2c2 + left.r2c3 * right.r3c2;
}
public static void Get3x3At2x3(in FP32Matrix3x3 left, in FP32Matrix2x3 right, out FP32Matrix2x3 product)
public static void Get3x3At2x3(in Matrix3x3FP32 left, in Matrix2x3FP32 right, out Matrix2x3FP32 product)
{
float r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
float r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;
@ -143,7 +127,7 @@ namespace BasicGeometry
product.r3c2 = r3c2;
}
public static void Get3x3At3x3(in FP32Matrix3x3 left, in FP32Matrix3x3 right, out FP32Matrix3x3 product)
public static void Get3x3At3x3(in Matrix3x3FP32 left, in Matrix3x3FP32 right, out Matrix3x3FP32 product)
{
float r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
float r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;

View file

@ -1,30 +1,14 @@
/*
* Copyright 2019-2025 Andrey Pokidov <andrey.pokidov@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 11 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP64MatrixProduct
public class MatrixProductFP64
{
public static void Get2x2At2x2(in FP64Matrix2x2 left, in FP64Matrix2x2 right, out FP64Matrix2x2 product)
public static void Get2x2At2x2(in Matrix2x2FP64 left, in Matrix2x2FP64 right, out Matrix2x2FP64 product)
{
double r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
double r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -39,7 +23,7 @@ namespace BasicGeometry
product.r2c2 = r2c2;
}
public static void Get2x2At3x2(in FP64Matrix2x2 left, in FP64Matrix3x2 right, out FP64Matrix3x2 product)
public static void Get2x2At3x2(in Matrix2x2FP64 left, in Matrix3x2FP64 right, out Matrix3x2FP64 product)
{
double r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
double r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -58,7 +42,7 @@ namespace BasicGeometry
product.r2c3 = r2c3;
}
public static void Get2x3At2x2(in FP64Matrix2x3 left, in FP64Matrix2x2 right, out FP64Matrix2x3 product)
public static void Get2x3At2x2(in Matrix2x3FP64 left, in Matrix2x2FP64 right, out Matrix2x3FP64 product)
{
double r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
double r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -79,7 +63,7 @@ namespace BasicGeometry
product.r3c2 = r3c2;
}
public static void Get2x3At3x2(in FP64Matrix2x3 left, in FP64Matrix3x2 right, out FP64Matrix3x3 product)
public static void Get2x3At3x2(in Matrix2x3FP64 left, in Matrix3x2FP64 right, out Matrix3x3FP64 product)
{
product.r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1;
product.r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2;
@ -94,7 +78,7 @@ namespace BasicGeometry
product.r3c3 = left.r3c1 * right.r1c2 + left.r3c2 * right.r2c3;
}
public static void Get3x2At3x3(in FP64Matrix3x2 left, in FP64Matrix3x3 right, out FP64Matrix3x2 product)
public static void Get3x2At3x3(in Matrix3x2FP64 left, in Matrix3x3FP64 right, out Matrix3x2FP64 product)
{
double r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
double r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;
@ -113,7 +97,7 @@ namespace BasicGeometry
product.r2c3 = r2c3;
}
public static void Get3x2At2x3(in FP64Matrix3x2 left, in FP64Matrix2x3 right, out FP64Matrix2x2 product)
public static void Get3x2At2x3(in Matrix3x2FP64 left, in Matrix2x3FP64 right, out Matrix2x2FP64 product)
{
product.r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
product.r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;
@ -122,7 +106,7 @@ namespace BasicGeometry
product.r2c2 = left.r2c1 * right.r1c2 + left.r2c2 * right.r2c2 + left.r2c3 * right.r3c2;
}
public static void Get3x3At2x3(in FP64Matrix3x3 left, in FP64Matrix2x3 right, out FP64Matrix2x3 product)
public static void Get3x3At2x3(in Matrix3x3FP64 left, in Matrix2x3FP64 right, out Matrix2x3FP64 product)
{
double r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
double r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;
@ -143,7 +127,7 @@ namespace BasicGeometry
product.r3c2 = r3c2;
}
public static void Get3x3At3x3(in FP64Matrix3x3 left, in FP64Matrix3x3 right, out FP64Matrix3x3 product)
public static void Get3x3At3x3(in Matrix3x3FP64 left, in Matrix3x3FP64 right, out Matrix3x3FP64 product)
{
double r1c1 = left.r1c1 * right.r1c1 + left.r1c2 * right.r2c1 + left.r1c3 * right.r3c1;
double r1c2 = left.r1c1 * right.r1c2 + left.r1c2 * right.r2c2 + left.r1c3 * right.r3c2;

View file

@ -0,0 +1,504 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 4 Dec 2024
*/
namespace BGC
{
public struct QuaternionFP32
{
public float s0 = 0.0f, x1 = 0.0f, x2 = 0.0f, x3 = 0.0f;
public QuaternionFP32(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public QuaternionFP32(in QuaternionFP32 quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public QuaternionFP32(in QuaternionFP64 quaternion)
{
this.s0 = (float)quaternion.s0;
this.x1 = (float)quaternion.x1;
this.x2 = (float)quaternion.x2;
this.x3 = (float)quaternion.x3;
}
public readonly float GetSquareModulus()
{
return this.s0 * this.s0 + this.x1 * this.x1 + (this.x2 * this.x2 + this.x3 * this.x3);
}
public readonly float GetModulus()
{
return MathF.Sqrt(this.GetSquareModulus());
}
public readonly bool IsZero()
{
return this.GetSquareModulus() <= UtilityFP32.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP32.IsSqareUnit(this.GetSquareModulus());
}
public void Reset()
{
this.s0 = 0.0f;
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void MakeUnit()
{
this.s0 = 1.0f;
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void Conjugate()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void MakeOpposit()
{
this.s0 = -this.s0;
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public bool Invert()
{
float squareModulus = this.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
return false;
}
float multiplicand = 1.0f / squareModulus;
this.s0 = this.s0 * multiplicand;
this.x1 = -this.x1 * multiplicand;
this.x2 = -this.x2 * multiplicand;
this.x3 = -this.x3 * multiplicand;
return true;
}
public bool Normalize()
{
float squareModulus = this.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
this.s0 *= multiplier;
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
return true;
}
public void SetValues(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in QuaternionFP32 quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public void SetValues(in QuaternionFP64 quaternion)
{
this.s0 = (float)quaternion.s0;
this.x1 = (float)quaternion.x1;
this.x2 = (float)quaternion.x2;
this.x3 = (float)quaternion.x3;
}
public static void Reset(out QuaternionFP32 quaternion)
{
quaternion.s0 = 0.0f;
quaternion.x1 = 0.0f;
quaternion.x2 = 0.0f;
quaternion.x3 = 0.0f;
}
public static void MakeUnit(out QuaternionFP32 quaternion)
{
quaternion.s0 = 1.0f;
quaternion.x1 = 0.0f;
quaternion.x2 = 0.0f;
quaternion.x3 = 0.0f;
}
public static void Swap(ref QuaternionFP32 quaternion1, ref QuaternionFP32 quaternion2)
{
float s0 = quaternion1.s0;
float x1 = quaternion1.x1;
float x2 = quaternion1.x2;
float x3 = quaternion1.x3;
quaternion1.s0 = quaternion2.s0;
quaternion1.x1 = quaternion2.x1;
quaternion1.x2 = quaternion2.x2;
quaternion1.x3 = quaternion2.x3;
quaternion2.s0 = s0;
quaternion2.x1 = x1;
quaternion2.x2 = x2;
quaternion2.x3 = x3;
}
public static void Add(in QuaternionFP32 quaternion1, in QuaternionFP32 quaternion2, out QuaternionFP32 sum)
{
sum.s0 = quaternion1.s0 + quaternion2.s0;
sum.x1 = quaternion1.x1 + quaternion2.x1;
sum.x2 = quaternion1.x2 + quaternion2.x2;
sum.x3 = quaternion1.x3 + quaternion2.x3;
}
public static void AddScaled(in QuaternionFP32 basic_quaternion, in QuaternionFP32 scalable_quaternion, float scale, out QuaternionFP32 sum)
{
sum.s0 = basic_quaternion.s0 + scale * scalable_quaternion.s0;
sum.x1 = basic_quaternion.x1 + scale * scalable_quaternion.x1;
sum.x2 = basic_quaternion.x2 + scale * scalable_quaternion.x2;
sum.x3 = basic_quaternion.x3 + scale * scalable_quaternion.x3;
}
public static void Subtract(in QuaternionFP32 minuend, in QuaternionFP32 subtrahend, out QuaternionFP32 difference)
{
difference.s0 = minuend.s0 - subtrahend.s0;
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in QuaternionFP32 left, in QuaternionFP32 right, out QuaternionFP32 product)
{
float s0 = left.s0 * right.s0 - left.x1 * right.x1 - (left.x2 * right.x2 + left.x3 * right.x3);
float x1 = left.x1 * right.s0 + left.s0 * right.x1 - (left.x3 * right.x2 - left.x2 * right.x3);
float x2 = left.x2 * right.s0 + left.s0 * right.x2 - (left.x1 * right.x3 - left.x3 * right.x1);
float x3 = left.x3 * right.s0 + left.s0 * right.x3 - (left.x2 * right.x1 - left.x1 * right.x2);
product.s0 = s0;
product.x1 = x1;
product.x2 = x2;
product.x3 = x3;
}
public static void Multiply(in QuaternionFP32 quaternion, float multiplier, out QuaternionFP32 product)
{
product.s0 = quaternion.s0 * multiplier;
product.x1 = quaternion.x1 * multiplier;
product.x2 = quaternion.x2 * multiplier;
product.x3 = quaternion.x3 * multiplier;
}
public static bool Divide(in QuaternionFP32 divident, in QuaternionFP32 divisor, out QuaternionFP32 quotient)
{
float squareModulus = divisor.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
Reset(out quotient);
return false;
}
float s0 = (divident.s0 * divisor.s0 + divident.x1 * divisor.x1) + (divident.x2 * divisor.x2 + divident.x3 * divisor.x3);
float x1 = (divident.x1 * divisor.s0 + divident.x3 * divisor.x2) - (divident.s0 * divisor.x1 + divident.x2 * divisor.x3);
float x2 = (divident.x2 * divisor.s0 + divident.x1 * divisor.x3) - (divident.s0 * divisor.x2 + divident.x3 * divisor.x1);
float x3 = (divident.x3 * divisor.s0 + divident.x2 * divisor.x1) - (divident.s0 * divisor.x3 + divident.x1 * divisor.x2);
float multiplicand = 1.0f / squareModulus;
quotient.s0 = s0 * multiplicand;
quotient.x1 = x1 * multiplicand;
quotient.x2 = x2 * multiplicand;
quotient.x3 = x3 * multiplicand;
return true;
}
public static void Divide(in QuaternionFP32 divident, float divisor, out QuaternionFP32 quotient)
{
Multiply(divident, 1.0f / divisor, out quotient);
}
public static void GetMeanOfTwo(in QuaternionFP32 vector1, in QuaternionFP32 vector2, out QuaternionFP32 mean)
{
mean.s0 = (vector1.s0 + vector2.s0) * 0.5f;
mean.x1 = (vector1.x1 + vector2.x1) * 0.5f;
mean.x2 = (vector1.x2 + vector2.x2) * 0.5f;
mean.x3 = (vector1.x3 + vector2.x3) * 0.5f;
}
public static void GetMeanOfThree(in QuaternionFP32 vector1, in QuaternionFP32 vector2, in QuaternionFP32 vector3, out QuaternionFP32 mean)
{
mean.s0 = (vector1.s0 + vector2.s0 + vector3.s0) * UtilityFP32.ONE_THIRD;
mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP32.ONE_THIRD;
mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP32.ONE_THIRD;
mean.x3 = (vector1.x3 + vector2.x3 + vector3.x3) * UtilityFP32.ONE_THIRD;
}
public static void Interpolate(in QuaternionFP32 quaternion1, in QuaternionFP32 quaternion2, float phase, out QuaternionFP32 interpolation)
{
float counterphase = 1.0f - phase;
interpolation.s0 = quaternion1.s0 * counterphase + quaternion2.s0 * phase;
interpolation.x1 = quaternion1.x1 * counterphase + quaternion2.x1 * phase;
interpolation.x2 = quaternion1.x2 * counterphase + quaternion2.x2 * phase;
interpolation.x3 = quaternion1.x3 * counterphase + quaternion2.x3 * phase;
}
public static void GetConjugate(in QuaternionFP32 quaternion, out QuaternionFP32 conjugate)
{
conjugate.s0 = quaternion.s0;
conjugate.x1 = -quaternion.x1;
conjugate.x2 = -quaternion.x2;
conjugate.x3 = -quaternion.x3;
}
public static void GetOpposite(in QuaternionFP32 quaternion, out QuaternionFP32 opposit)
{
opposit.s0 = -quaternion.s0;
opposit.x1 = -quaternion.x1;
opposit.x2 = -quaternion.x2;
opposit.x3 = -quaternion.x3;
}
public static bool GetInverse(in QuaternionFP32 quaternion, out QuaternionFP32 inverse)
{
float squareModulus = quaternion.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
Reset(out inverse);
return false;
}
float multiplicand = 1.0f / squareModulus;
inverse.s0 = quaternion.s0 * multiplicand;
inverse.x1 = -quaternion.x1 * multiplicand;
inverse.x2 = -quaternion.x2 * multiplicand;
inverse.x3 = -quaternion.x3 * multiplicand;
return true;
}
public static bool GetNormalized(in QuaternionFP32 quaternion, out QuaternionFP32 normalized)
{
float squareModulus = quaternion.GetSquareModulus();
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
Reset(out normalized);
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
normalized.s0 = quaternion.s0 * multiplier;
normalized.x1 = quaternion.x1 * multiplier;
normalized.x2 = quaternion.x2 * multiplier;
normalized.x3 = quaternion.x3 * multiplier;
return true;
}
public static bool GetExponation(in QuaternionFP32 quaternion, float exponent, out QuaternionFP32 power)
{
float s0s0 = quaternion.s0 * quaternion.s0;
float x1x1 = quaternion.x1 * quaternion.x1;
float x2x2 = quaternion.x2 * quaternion.x2;
float x3x3 = quaternion.x3 * quaternion.x3;
float squareVector = x1x1 + (x2x2 + x3x3);
float squareModulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (float.IsNaN(squareModulus))
{
Reset(out power);
return false;
}
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON)
{
Reset(out power);
return true;
}
if (squareVector <= UtilityFP32.SQUARE_EPSYLON)
{
if (quaternion.s0 < 0.0f)
{
Reset(out power);
return false;
}
power.s0 = MathF.Pow(quaternion.s0, exponent);
power.x1 = 0.0f;
power.x2 = 0.0f;
power.x3 = 0.0f;
return true;
}
float sine = MathF.Sqrt(squareVector / squareModulus);
float power_angle = MathF.Atan2(sine, quaternion.s0 / MathF.Sqrt(squareModulus)) * exponent;
float power_modulus = MathF.Pow(squareModulus, 0.5f * exponent);
float multiplier = power_modulus * MathF.Sin(power_angle) / sine;
power.s0 = power_modulus * MathF.Cos(power_angle);
power.x1 = quaternion.x1 * multiplier;
power.x2 = quaternion.x2 * multiplier;
power.x3 = quaternion.x3 * multiplier;
return true;
}
public static bool GetRotationMatrix(in QuaternionFP32 quaternion, out Matrix3x3FP32 matrix)
{
float s0s0 = quaternion.s0 * quaternion.s0;
float x1x1 = quaternion.x1 * quaternion.x1;
float x2x2 = quaternion.x2 * quaternion.x2;
float x3x3 = quaternion.x3 * quaternion.x3;
float squareModulus = s0s0 + x1x1 + (x2x2 + x3x3);
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON)
{
Matrix3x3FP32.LoadIdentity(out matrix);
return false;
}
float corrector1 = 1.0f / squareModulus;
float s0x1 = quaternion.s0 * quaternion.x1;
float s0x2 = quaternion.s0 * quaternion.x2;
float s0x3 = quaternion.s0 * quaternion.x3;
float x1x2 = quaternion.x1 * quaternion.x2;
float x1x3 = quaternion.x1 * quaternion.x3;
float x2x3 = quaternion.x2 * quaternion.x3;
float corrector2 = 2.0f * corrector1;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 - s0x3);
matrix.r2c3 = corrector2 * (x2x3 - s0x1);
matrix.r3c1 = corrector2 * (x1x3 - s0x2);
matrix.r2c1 = corrector2 * (x1x2 + s0x3);
matrix.r3c2 = corrector2 * (x2x3 + s0x1);
matrix.r1c3 = corrector2 * (x1x3 + s0x2);
return true;
}
public static bool GetReverseMatrix(in QuaternionFP32 quaternion, out Matrix3x3FP32 matrix)
{
float s0s0 = quaternion.s0 * quaternion.s0;
float x1x1 = quaternion.x1 * quaternion.x1;
float x2x2 = quaternion.x2 * quaternion.x2;
float x3x3 = quaternion.x3 * quaternion.x3;
float squareModulus = s0s0 + x1x1 + (x2x2 + x3x3);
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON)
{
Matrix3x3FP32.LoadIdentity(out matrix);
return false;
}
float corrector1 = 1.0f / squareModulus;
float s0x1 = quaternion.s0 * quaternion.x1;
float s0x2 = quaternion.s0 * quaternion.x2;
float s0x3 = quaternion.s0 * quaternion.x3;
float x1x2 = quaternion.x1 * quaternion.x2;
float x1x3 = quaternion.x1 * quaternion.x3;
float x2x3 = quaternion.x2 * quaternion.x3;
float corrector2 = 2.0f * corrector1;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 + s0x3);
matrix.r2c3 = corrector2 * (x2x3 + s0x1);
matrix.r3c1 = corrector2 * (x1x3 + s0x2);
matrix.r2c1 = corrector2 * (x1x2 - s0x3);
matrix.r3c2 = corrector2 * (x2x3 - s0x1);
matrix.r1c3 = corrector2 * (x1x3 - s0x2);
return true;
}
public static bool GetBothMatrices(in QuaternionFP32 quaternion, out Matrix3x3FP32 matrix, out Matrix3x3FP32 reverse)
{
if (GetReverseMatrix(quaternion, out reverse))
{
Matrix3x3FP32.MakeTransposed(reverse, out matrix);
return true;
}
Matrix3x3FP32.LoadIdentity(out matrix);
return false;
}
public static bool AreClose(in QuaternionFP32 quaternion1, in QuaternionFP32 quaternion2)
{
float ds0 = quaternion1.s0 - quaternion2.s0;
float dx1 = quaternion1.x1 - quaternion2.x1;
float dx2 = quaternion1.x2 - quaternion2.x2;
float dx3 = quaternion1.x3 - quaternion2.x3;
float squareModulus1 = quaternion1.GetSquareModulus();
float squareModulus2 = quaternion2.GetSquareModulus();
float squareDistance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3);
if (squareModulus1 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT) {
return squareDistance <= UtilityFP32.SQUARE_EPSYLON;
}
return squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus2;
}
}
}

View file

@ -0,0 +1,504 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 4 Dec 2024
*/
namespace BGC
{
public struct QuaternionFP64
{
public double s0 = 0.0, x1 = 0.0, x2 = 0.0, x3 = 0.0;
public QuaternionFP64(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public QuaternionFP64(in QuaternionFP64 quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public QuaternionFP64(in QuaternionFP32 quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public readonly double GetSquareModulus()
{
return this.s0 * this.s0 + this.x1 * this.x1 + (this.x2 * this.x2 + this.x3 * this.x3);
}
public readonly double GetModulus()
{
return Math.Sqrt(this.GetSquareModulus());
}
public readonly bool IsZero()
{
return this.GetSquareModulus() <= UtilityFP64.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP64.IsSqareUnit(this.GetSquareModulus());
}
public void Reset()
{
this.s0 = 0.0;
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void MakeUnit()
{
this.s0 = 1.0;
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void Conjugate()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void MakeOpposite()
{
this.s0 = -this.s0;
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public bool Invert()
{
double squareModulus = this.GetSquareModulus();
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
return false;
}
double multiplicand = 1.0 / squareModulus;
this.s0 = this.s0 * multiplicand;
this.x1 = -this.x1 * multiplicand;
this.x2 = -this.x2 * multiplicand;
this.x3 = -this.x3 * multiplicand;
return true;
}
public bool Normalize()
{
double squareModulus = this.GetSquareModulus();
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
return false;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
this.s0 *= multiplier;
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
return true;
}
public void SetValues(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in QuaternionFP64 quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public void SetValues(in QuaternionFP32 quaternion)
{
this.s0 = quaternion.s0;
this.x1 = quaternion.x1;
this.x2 = quaternion.x2;
this.x3 = quaternion.x3;
}
public static void Reset(out QuaternionFP64 quaternion)
{
quaternion.s0 = 0.0;
quaternion.x1 = 0.0;
quaternion.x2 = 0.0;
quaternion.x3 = 0.0;
}
public static void MakeUnit(out QuaternionFP64 quaternion)
{
quaternion.s0 = 1.0;
quaternion.x1 = 0.0;
quaternion.x2 = 0.0;
quaternion.x3 = 0.0;
}
public static void Swap(ref QuaternionFP64 quaternion1, ref QuaternionFP64 quaternion2)
{
double s0 = quaternion1.s0;
double x1 = quaternion1.x1;
double x2 = quaternion1.x2;
double x3 = quaternion1.x3;
quaternion1.s0 = quaternion2.s0;
quaternion1.x1 = quaternion2.x1;
quaternion1.x2 = quaternion2.x2;
quaternion1.x3 = quaternion2.x3;
quaternion2.s0 = s0;
quaternion2.x1 = x1;
quaternion2.x2 = x2;
quaternion2.x3 = x3;
}
public static void Add(in QuaternionFP64 quaternion1, in QuaternionFP64 quaternion2, out QuaternionFP64 sum)
{
sum.s0 = quaternion1.s0 + quaternion2.s0;
sum.x1 = quaternion1.x1 + quaternion2.x1;
sum.x2 = quaternion1.x2 + quaternion2.x2;
sum.x3 = quaternion1.x3 + quaternion2.x3;
}
public static void AddScaled(in QuaternionFP64 basic_quaternion, in QuaternionFP64 scalable_quaternion, double scale, out QuaternionFP64 sum)
{
sum.s0 = basic_quaternion.s0 + scale * scalable_quaternion.s0;
sum.x1 = basic_quaternion.x1 + scale * scalable_quaternion.x1;
sum.x2 = basic_quaternion.x2 + scale * scalable_quaternion.x2;
sum.x3 = basic_quaternion.x3 + scale * scalable_quaternion.x3;
}
public static void Subtract(in QuaternionFP64 minuend, in QuaternionFP64 subtrahend, out QuaternionFP64 difference)
{
difference.s0 = minuend.s0 - subtrahend.s0;
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in QuaternionFP64 left, in QuaternionFP64 right, out QuaternionFP64 product)
{
double s0 = left.s0 * right.s0 - left.x1 * right.x1 - (left.x2 * right.x2 + left.x3 * right.x3);
double x1 = left.x1 * right.s0 + left.s0 * right.x1 - (left.x3 * right.x2 - left.x2 * right.x3);
double x2 = left.x2 * right.s0 + left.s0 * right.x2 - (left.x1 * right.x3 - left.x3 * right.x1);
double x3 = left.x3 * right.s0 + left.s0 * right.x3 - (left.x2 * right.x1 - left.x1 * right.x2);
product.s0 = s0;
product.x1 = x1;
product.x2 = x2;
product.x3 = x3;
}
public static void Multiply(in QuaternionFP64 quaternion, double multiplier, out QuaternionFP64 product)
{
product.s0 = quaternion.s0 * multiplier;
product.x1 = quaternion.x1 * multiplier;
product.x2 = quaternion.x2 * multiplier;
product.x3 = quaternion.x3 * multiplier;
}
public static bool Divide(in QuaternionFP64 divident, in QuaternionFP64 divisor, out QuaternionFP64 quotient)
{
double squareModulus = divisor.GetSquareModulus();
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
Reset(out quotient);
return false;
}
double s0 = (divident.s0 * divisor.s0 + divident.x1 * divisor.x1) + (divident.x2 * divisor.x2 + divident.x3 * divisor.x3);
double x1 = (divident.x1 * divisor.s0 + divident.x3 * divisor.x2) - (divident.s0 * divisor.x1 + divident.x2 * divisor.x3);
double x2 = (divident.x2 * divisor.s0 + divident.x1 * divisor.x3) - (divident.s0 * divisor.x2 + divident.x3 * divisor.x1);
double x3 = (divident.x3 * divisor.s0 + divident.x2 * divisor.x1) - (divident.s0 * divisor.x3 + divident.x1 * divisor.x2);
double multiplicand = 1.0 / squareModulus;
quotient.s0 = s0 * multiplicand;
quotient.x1 = x1 * multiplicand;
quotient.x2 = x2 * multiplicand;
quotient.x3 = x3 * multiplicand;
return true;
}
public static void Divide(in QuaternionFP64 divident, double divisor, out QuaternionFP64 quotient)
{
Multiply(divident, 1.0 / divisor, out quotient);
}
public static void GetMeanOfTwo(in QuaternionFP64 vector1, in QuaternionFP64 vector2, out QuaternionFP64 mean)
{
mean.s0 = (vector1.s0 + vector2.s0) * 0.5;
mean.x1 = (vector1.x1 + vector2.x1) * 0.5;
mean.x2 = (vector1.x2 + vector2.x2) * 0.5;
mean.x3 = (vector1.x3 + vector2.x3) * 0.5;
}
public static void GetMeanOfThree(in QuaternionFP64 vector1, in QuaternionFP64 vector2, in QuaternionFP64 vector3, out QuaternionFP64 mean)
{
mean.s0 = (vector1.s0 + vector2.s0 + vector3.s0) * UtilityFP64.ONE_THIRD;
mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP64.ONE_THIRD;
mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP64.ONE_THIRD;
mean.x3 = (vector1.x3 + vector2.x3 + vector3.x3) * UtilityFP64.ONE_THIRD;
}
public static void Interpolate(in QuaternionFP64 quaternion1, in QuaternionFP64 quaternion2, double phase, out QuaternionFP64 interpolation)
{
double counterphase = 1.0 - phase;
interpolation.s0 = quaternion1.s0 * counterphase + quaternion2.s0 * phase;
interpolation.x1 = quaternion1.x1 * counterphase + quaternion2.x1 * phase;
interpolation.x2 = quaternion1.x2 * counterphase + quaternion2.x2 * phase;
interpolation.x3 = quaternion1.x3 * counterphase + quaternion2.x3 * phase;
}
public static void GetConjugate(in QuaternionFP64 quaternion, out QuaternionFP64 conjugate)
{
conjugate.s0 = quaternion.s0;
conjugate.x1 = -quaternion.x1;
conjugate.x2 = -quaternion.x2;
conjugate.x3 = -quaternion.x3;
}
public static void GetOpposite(in QuaternionFP64 quaternion, out QuaternionFP64 opposit)
{
opposit.s0 = -quaternion.s0;
opposit.x1 = -quaternion.x1;
opposit.x2 = -quaternion.x2;
opposit.x3 = -quaternion.x3;
}
public static bool GetInverse(in QuaternionFP64 quaternion, out QuaternionFP64 inverse)
{
double squareModulus = quaternion.GetSquareModulus();
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
Reset(out inverse);
return false;
}
double multiplicand = 1.0 / squareModulus;
inverse.s0 = quaternion.s0 * multiplicand;
inverse.x1 = -quaternion.x1 * multiplicand;
inverse.x2 = -quaternion.x2 * multiplicand;
inverse.x3 = -quaternion.x3 * multiplicand;
return true;
}
public static bool GetNormalized(in QuaternionFP64 quaternion, out QuaternionFP64 normalized)
{
double squareModulus = quaternion.GetSquareModulus();
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
Reset(out normalized);
return false;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
normalized.s0 = quaternion.s0 * multiplier;
normalized.x1 = quaternion.x1 * multiplier;
normalized.x2 = quaternion.x2 * multiplier;
normalized.x3 = quaternion.x3 * multiplier;
return true;
}
public static bool GetExponation(in QuaternionFP64 quaternion, double exponent, out QuaternionFP64 power)
{
double s0s0 = quaternion.s0 * quaternion.s0;
double x1x1 = quaternion.x1 * quaternion.x1;
double x2x2 = quaternion.x2 * quaternion.x2;
double x3x3 = quaternion.x3 * quaternion.x3;
double squareVector = x1x1 + (x2x2 + x3x3);
double squareModulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (double.IsNaN(squareModulus))
{
Reset(out power);
return false;
}
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON)
{
Reset(out power);
return true;
}
if (squareVector <= UtilityFP64.SQUARE_EPSYLON)
{
if (quaternion.s0 < 0.0f)
{
Reset(out power);
return false;
}
power.s0 = Math.Pow(quaternion.s0, exponent);
power.x1 = 0.0f;
power.x2 = 0.0f;
power.x3 = 0.0f;
return true;
}
double sine = Math.Sqrt(squareVector / squareModulus);
double power_angle = Math.Atan2(sine, quaternion.s0 / Math.Sqrt(squareModulus)) * exponent;
double power_modulus = Math.Pow(squareModulus, 0.5f * exponent);
double multiplier = power_modulus * Math.Sin(power_angle) / sine;
power.s0 = power_modulus * Math.Cos(power_angle);
power.x1 = quaternion.x1 * multiplier;
power.x2 = quaternion.x2 * multiplier;
power.x3 = quaternion.x3 * multiplier;
return true;
}
public static bool GetRotationMatrix(in QuaternionFP64 quaternion, out Matrix3x3FP64 matrix)
{
double s0s0 = quaternion.s0 * quaternion.s0;
double x1x1 = quaternion.x1 * quaternion.x1;
double x2x2 = quaternion.x2 * quaternion.x2;
double x3x3 = quaternion.x3 * quaternion.x3;
double squareModulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || !double.IsFinite(squareModulus))
{
Matrix3x3FP64.LoadIdentity(out matrix);
return false;
}
double corrector1 = 1.0 / squareModulus;
double s0x1 = quaternion.s0 * quaternion.x1;
double s0x2 = quaternion.s0 * quaternion.x2;
double s0x3 = quaternion.s0 * quaternion.x3;
double x1x2 = quaternion.x1 * quaternion.x2;
double x1x3 = quaternion.x1 * quaternion.x3;
double x2x3 = quaternion.x2 * quaternion.x3;
double corrector2 = 2.0 * corrector1;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 - s0x3);
matrix.r2c3 = corrector2 * (x2x3 - s0x1);
matrix.r3c1 = corrector2 * (x1x3 - s0x2);
matrix.r2c1 = corrector2 * (x1x2 + s0x3);
matrix.r3c2 = corrector2 * (x2x3 + s0x1);
matrix.r1c3 = corrector2 * (x1x3 + s0x2);
return true;
}
public static bool GetReverseMatrix(in QuaternionFP64 quaternion, out Matrix3x3FP64 matrix)
{
double s0s0 = quaternion.s0 * quaternion.s0;
double x1x1 = quaternion.x1 * quaternion.x1;
double x2x2 = quaternion.x2 * quaternion.x2;
double x3x3 = quaternion.x3 * quaternion.x3;
double squareModulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || !double.IsFinite(squareModulus))
{
Matrix3x3FP64.LoadIdentity(out matrix);
return false;
}
double corrector1 = 1.0 / squareModulus;
double s0x1 = quaternion.s0 * quaternion.x1;
double s0x2 = quaternion.s0 * quaternion.x2;
double s0x3 = quaternion.s0 * quaternion.x3;
double x1x2 = quaternion.x1 * quaternion.x2;
double x1x3 = quaternion.x1 * quaternion.x3;
double x2x3 = quaternion.x2 * quaternion.x3;
double corrector2 = 2.0 * corrector1;
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix.r1c2 = corrector2 * (x1x2 + s0x3);
matrix.r2c3 = corrector2 * (x2x3 + s0x1);
matrix.r3c1 = corrector2 * (x1x3 + s0x2);
matrix.r2c1 = corrector2 * (x1x2 - s0x3);
matrix.r3c2 = corrector2 * (x2x3 - s0x1);
matrix.r1c3 = corrector2 * (x1x3 - s0x2);
return true;
}
public static bool GetBothMatrices(in QuaternionFP64 quaternion, out Matrix3x3FP64 matrix, out Matrix3x3FP64 reverse)
{
if (GetReverseMatrix(quaternion, out reverse))
{
Matrix3x3FP64.GetTransposed(reverse, out matrix);
return true;
}
Matrix3x3FP64.LoadIdentity(out matrix);
return false;
}
public static bool AreClose(QuaternionFP32 quaternion1, QuaternionFP32 quaternion2)
{
double ds0 = quaternion1.s0 - quaternion2.s0;
double dx1 = quaternion1.x1 - quaternion2.x1;
double dx2 = quaternion1.x2 - quaternion2.x2;
double dx3 = quaternion1.x3 - quaternion2.x3;
double squareModulus1 = quaternion1.GetSquareModulus();
double squareModulus2 = quaternion2.GetSquareModulus();
double squareDistance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3);
if (squareModulus1 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT) {
return squareDistance <= UtilityFP64.SQUARE_EPSYLON;
}
return squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus2;
}
}
}

View file

@ -1,12 +1,12 @@

/*
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 18 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP32Radians
public class RadianFP32
{
public const float PI = 3.1415926536f;
public const float TWO_PI = 6.2831853072f;

View file

@ -1,12 +1,12 @@

/*
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 18 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP64Radians
public class RadianFP64
{
public const double PI = 3.14159265358979324;
public const double TWO_PI = 6.28318530717958648;

View file

@ -0,0 +1,27 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 2 Feb 2019
*/
namespace BGC
{
public struct Rotation3FP32
{
private float angle = 0.0f;
private Vector3FP32 axis;
public Rotation3FP32(Rotation3FP32 rotation)
{
this.angle = rotation.angle;
this.axis = rotation.axis;
}
public void Reset()
{
this.angle = 0.0f;
this.axis.Reset();
}
}
}

View file

@ -0,0 +1,27 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 2 Feb 2019
*/
namespace BGC
{
public struct Rotation3FP64
{
private double angle = 0.0;
private Vector3FP64 axis;
public Rotation3FP64(Rotation3FP64 rotation)
{
this.angle = rotation.angle;
this.axis = rotation.axis;
}
public void Reset()
{
this.angle = 0.0;
this.axis.Reset();
}
}
}

View file

@ -1,16 +1,16 @@

/*
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 18 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP32Turns
public class TurnFP32
{
public static float ToRadians(float turns)
{
return turns * FP32Radians.TWO_PI;
return turns * RadianFP32.TWO_PI;
}
public static float ToDegrees(float turns)
@ -22,7 +22,7 @@ namespace BasicGeometry
{
if (toUnit == AngleUnit.RADIANS)
{
return turns * FP32Radians.TWO_PI;
return turns * RadianFP32.TWO_PI;
}
if (toUnit == AngleUnit.DEGREES)

View file

@ -1,19 +1,19 @@

/*
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 18 Nov 2024
*/
namespace BasicGeometry
namespace BGC
{
public class FP64Turns
public class TurnFP64
{
public static double TurnsToRadians(double turns)
public static double ToRadians(double turns)
{
return turns * FP64Radians.TWO_PI;
return turns * RadianFP64.TWO_PI;
}
public static double TurnsToDegrees(double turns)
public static double ToDegrees(double turns)
{
return turns * 360.0;
}
@ -22,7 +22,7 @@ namespace BasicGeometry
{
if (toUnit == AngleUnit.RADIANS)
{
return turns * FP64Radians.TWO_PI;
return turns * RadianFP64.TWO_PI;
}
if (toUnit == AngleUnit.DEGREES)

View file

@ -0,0 +1,52 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 12 Nov 2024
*/
namespace BGC
{
public class UtilityFP32
{
public const float EPSYLON = 4.76837E-7f;
public const float SQUARE_EPSYLON = EPSYLON * EPSYLON;
public const float EPSYLON_EFFECTIVENESS_LIMIT = 1.0f;
public const float ONE_THIRD = 0.333333333f;
public const float ONE_SIXTH = 0.166666667f;
public const float ONE_NINETH = 0.111111111f;
public const float GOLDEN_RATIO_HIGH = 1.618034f;
public const float GOLDEN_RATIO_LOW = 0.618034f;
public static bool IsZero(float value)
{
return -EPSYLON <= value && value <= EPSYLON;
}
public static bool IsUnit(float value)
{
return (1.0f - EPSYLON) <= value && value <= (1.0f + EPSYLON);
}
public static bool IsSqareUnit(float square)
{
return (1.0f - 2.0f * EPSYLON) <= square && square <= (1.0f + 2.0f * EPSYLON);
}
public static bool AreClose(float value1, float value2)
{
float difference = value1 - value2;
float squareValue1 = value1 * value1;
float squareValue2 = value2 * value2;
float squareDifference = difference * difference;
if (squareValue1 <= EPSYLON_EFFECTIVENESS_LIMIT || squareValue2 <= EPSYLON_EFFECTIVENESS_LIMIT) {
return squareDifference <= SQUARE_EPSYLON;
}
return squareDifference <= SQUARE_EPSYLON * squareValue1 && squareDifference <= SQUARE_EPSYLON * squareValue2;
}
}
}

View file

@ -0,0 +1,52 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 12 Nov 2024
*/
namespace BGC
{
public class UtilityFP64
{
public const double EPSYLON = 4.996003611E-14;
public const double SQUARE_EPSYLON = EPSYLON * EPSYLON;
public const double EPSYLON_EFFECTIVENESS_LIMIT = 1.0;
public const double ONE_THIRD = 0.333333333333333333;
public const double ONE_SIXTH = 0.166666666666666667;
public const double ONE_NINETH = 0.111111111111111111;
public const double GOLDEN_RATIO_HIGH = 1.61803398874989485;
public const double GOLDEN_RATIO_LOW = 0.61803398874989485;
public static bool IsZero(double value)
{
return -EPSYLON <= value && value <= EPSYLON;
}
public static bool IsUnit(double value)
{
return (1.0 - EPSYLON) <= value && value <= (1.0 + EPSYLON);
}
public static bool IsSqareUnit(double square)
{
return (1.0 - 2.0 * EPSYLON) <= square && square <= (1.0 + 2.0 * EPSYLON);
}
public static bool AreClose(double value1, double value2)
{
double difference = value1 - value2;
double squareValue1 = value1 * value1;
double squareValue2 = value2 * value2;
double squareDifference = difference * difference;
if (squareValue1 <= EPSYLON_EFFECTIVENESS_LIMIT || squareValue2 <= EPSYLON_EFFECTIVENESS_LIMIT) {
return squareDifference <= SQUARE_EPSYLON;
}
return squareDifference <= SQUARE_EPSYLON * squareValue1 && squareDifference <= SQUARE_EPSYLON * squareValue2;
}
}
}

View file

@ -0,0 +1,338 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BGC
{
public struct Vector2FP32
{
public static readonly Vector2FP32 ZERO = new Vector2FP32(0.0f, 0.0f);
public float x1 = 0.0f;
public float x2 = 0.0f;
public Vector2FP32(float x1, float x2)
{
this.x1 = x1;
this.x2 = x2;
}
public Vector2FP32(in Vector2FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public Vector2FP32(in Vector2FP64 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
}
public readonly float GetSquareModulus()
{
return this.x1 * this.x1 + this.x2 * this.x2;
}
public readonly float GetModulus()
{
return MathF.Sqrt(this.GetSquareModulus());
}
public readonly bool IsZero()
{
return this.GetSquareModulus() <= UtilityFP32.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP32.IsSqareUnit(this.GetSquareModulus());
}
public void Reset()
{
this.x1 = 0.0f;
this.x2 = 0.0f;
}
public void MakeOpposite()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
}
public readonly Vector2FP32 GetOpposite()
{
return new Vector2FP32(-this.x1, -this.x2);
}
public bool Normalize()
{
float squareModulus = this.GetSquareModulus();
if (UtilityFP32.IsSqareUnit(squareModulus))
{
return true;
}
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
this.x1 *= multiplier;
this.x2 *= multiplier;
return true;
}
public void SetValues(float x1, float x2)
{
this.x1 = x1;
this.x2 = x2;
}
public void SetValues(in Vector2FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public void SetValues(in Vector2FP64 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
}
public readonly override string ToString()
{
return String.Format("Vector2FP32({0}, {1})", this.x1, this.x2);
}
public static void Swap(ref Vector2FP32 vector1, ref Vector2FP32 vector2)
{
float x1 = vector1.x1;
float x2 = vector1.x2;
vector1.x1 = vector2.x1;
vector1.x2 = vector2.x2;
vector2.x1 = x1;
vector2.x2 = x2;
}
public static void Reset(out Vector2FP32 vector)
{
vector.x1 = 0.0f;
vector.x2 = 0.0f;
}
public static void GetOpposite(in Vector2FP32 vector, out Vector2FP32 reverted)
{
reverted.x1 = -vector.x1;
reverted.x2 = -vector.x2;
}
public static bool GetNormalized(in Vector2FP32 vector, out Vector2FP32 normalized)
{
float squareModulus = vector.GetSquareModulus();
if (UtilityFP32.IsSqareUnit(squareModulus))
{
normalized.x1 = vector.x1;
normalized.x2 = vector.x2;
return true;
}
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
normalized.x1 = 0.0f;
normalized.x2 = 0.0f;
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
normalized.x1 = vector.x1 * multiplier;
normalized.x2 = vector.x2 * multiplier;
return true;
}
public static void Add(in Vector2FP32 vector1, in Vector2FP32 vector2, out Vector2FP32 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
}
public static void AddScaled(in Vector2FP32 basicVector, in Vector2FP32 scalableVector, float scale, out Vector2FP32 sum)
{
sum.x1 = basicVector.x1 + scalableVector.x1 * scale;
sum.x2 = basicVector.x2 + scalableVector.x2 * scale;
}
public static void Subtract(in Vector2FP32 minuend, in Vector2FP32 subtrahend, out Vector2FP32 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
}
public static void Multiply(in Vector2FP32 multiplicand, float multiplier, out Vector2FP32 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
}
public static void Divide(in Vector2FP32 dividend, float divisor, out Vector2FP32 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetMeanOfTwo(in Vector2FP32 vector1, in Vector2FP32 vector2, out Vector2FP32 mean)
{
mean.x1 = (vector1.x1 + vector2.x1) * 0.5f;
mean.x2 = (vector1.x2 + vector2.x2) * 0.5f;
}
public static void GetMeanOfThree(in Vector2FP32 vector1, in Vector2FP32 vector2, in Vector2FP32 vector3, out Vector2FP32 mean)
{
mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP32.ONE_THIRD;
mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP32.ONE_THIRD;
}
public static void Interpolate(in Vector2FP32 vector1, in Vector2FP32 vector2, float phase, out Vector2FP32 interpolation)
{
float counterphase = 1.0f - phase;
interpolation.x1 = vector1.x1 * counterphase + vector2.x1 * phase;
interpolation.x2 = vector1.x2 * counterphase + vector2.x2 * phase;
}
public static float GetScalarProduct(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2;
}
public static float GetCrossProduct(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
return vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
}
public static float GetAngle(in Vector2FP32 vector1, in Vector2FP32 vector2, AngleUnit unit)
{
float squareModulus1 = vector1.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus1))
{
return 0.0f;
}
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus2 <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus2))
{
return 0.0f;
}
float multiplier = MathF.Sqrt(1.0f / (squareModulus1 * squareModulus2));
float x = GetScalarProduct(vector1, vector2);
float y = GetCrossProduct(vector1, vector2);
return RadianFP32.ToUnits(MathF.Atan2(y * multiplier, x * multiplier), unit);
}
public static float GetSquareDistance(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
float dx1 = vector1.x1 - vector2.x1;
float dx2 = vector1.x2 - vector2.x2;
return dx1 * dx1 + dx2 * dx2;
}
public static float GetDistance(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
return MathF.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreCloseEnough(in Vector2FP32 vector1, in Vector2FP32 vector2, float distanceLimit)
{
return 0.0f <= distanceLimit && GetSquareDistance(vector1, vector2) <= distanceLimit * distanceLimit;
}
public static bool AreClose(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
float squareDistance = GetSquareDistance(vector1, vector2);
if (squareModulus1 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareDistance <= UtilityFP32.SQUARE_EPSYLON;
}
return squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus2;
}
public static bool AreParallel(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON)
{
return true;
}
float crossProduct = GetCrossProduct(vector1, vector2);
return crossProduct * crossProduct <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static bool AreOrthogonal(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON)
{
return true;
}
float scalarProduct = GetScalarProduct(vector1, vector2);
return scalarProduct * scalarProduct <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static Attitude GetAttitude(in Vector2FP32 vector1, in Vector2FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON)
{
return Attitude.ZERO;
}
float squareLimit = UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
float scalarProduct = GetScalarProduct(vector1, vector2);
if (scalarProduct * scalarProduct <= squareLimit)
{
return Attitude.ORTHOGONAL;
}
float crossProduct = GetCrossProduct(vector1, vector2);
if (crossProduct * crossProduct > squareLimit)
{
return Attitude.ANY;
}
return scalarProduct > 0.0f ? Attitude.CO_DIRECTIONAL : Attitude.COUNTER_DIRECTIONAL;
}
}
}

View file

@ -0,0 +1,338 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BGC
{
public struct Vector2FP64
{
public static readonly Vector2FP64 ZERO = new Vector2FP64(0.0, 0.0);
public double x1 = 0.0;
public double x2 = 0.0;
public Vector2FP64(double x1, double x2)
{
this.x1 = x1;
this.x2 = x2;
}
public Vector2FP64(in Vector2FP64 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public Vector2FP64(in Vector2FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public readonly double GetSquareModulus()
{
return this.x1 * this.x1 + this.x2 * this.x2;
}
public readonly double GetModulus()
{
return Math.Sqrt(this.GetSquareModulus());
}
public readonly bool IsZero()
{
return this.GetSquareModulus() <= UtilityFP64.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP64.IsSqareUnit(this.GetSquareModulus());
}
public void Reset()
{
this.x1 = 0.0;
this.x2 = 0.0;
}
public void MakeOpposite()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
}
public readonly Vector2FP64 GetOpposite()
{
return new Vector2FP64(-this.x1, -this.x2);
}
public bool Normalize()
{
double squareModulus = this.GetSquareModulus();
if (UtilityFP64.IsSqareUnit(squareModulus))
{
return true;
}
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
return false;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
this.x1 *= multiplier;
this.x2 *= multiplier;
return true;
}
public void SetValues(double x1, double x2)
{
this.x1 = x1;
this.x2 = x2;
}
public void SetValues(in Vector2FP64 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public void SetValues(in Vector2FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
}
public readonly override string ToString()
{
return String.Format("Vector2FP64({0}, {1})", this.x1, this.x2);
}
public static void Swap(ref Vector2FP64 vector1, ref Vector2FP64 vector2)
{
double x1 = vector1.x1;
double x2 = vector1.x2;
vector1.x1 = vector2.x1;
vector1.x2 = vector2.x2;
vector2.x1 = x1;
vector2.x2 = x2;
}
public static void Reset(out Vector2FP64 vector)
{
vector.x1 = 0.0;
vector.x2 = 0.0;
}
public static void GetOpposite(in Vector2FP64 vector, out Vector2FP64 reverted)
{
reverted.x1 = -vector.x1;
reverted.x2 = -vector.x2;
}
public static bool GetNormalized(in Vector2FP64 vector, out Vector2FP64 normalized)
{
double squareModulus = vector.GetSquareModulus();
if (UtilityFP64.IsSqareUnit(squareModulus))
{
normalized.x1 = vector.x1;
normalized.x2 = vector.x2;
return true;
}
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
normalized.x1 = 0.0;
normalized.x2 = 0.0;
return false;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
normalized.x1 = vector.x1 * multiplier;
normalized.x2 = vector.x2 * multiplier;
return true;
}
public static void Add(in Vector2FP64 vector1, in Vector2FP64 vector2, out Vector2FP64 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
}
public static void AddScaled(in Vector2FP64 basicVector, in Vector2FP64 scalableVector, double scale, out Vector2FP64 sum)
{
sum.x1 = basicVector.x1 + scalableVector.x1 * scale;
sum.x2 = basicVector.x2 + scalableVector.x2 * scale;
}
public static void Subtract(in Vector2FP64 minuend, in Vector2FP64 subtrahend, out Vector2FP64 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
}
public static void Multiply(in Vector2FP64 multiplicand, double multiplier, out Vector2FP64 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
}
public static void Divide(in Vector2FP64 dividend, double divisor, out Vector2FP64 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetMeanOfTwo(in Vector2FP64 vector1, in Vector2FP64 vector2, out Vector2FP64 mean)
{
mean.x1 = (vector1.x1 + vector2.x1) * 0.5;
mean.x2 = (vector1.x2 + vector2.x2) * 0.5;
}
public static void GetMeanOfThree(in Vector2FP64 vector1, in Vector2FP64 vector2, in Vector2FP64 vector3, out Vector2FP64 mean)
{
mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP64.ONE_THIRD;
mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP64.ONE_THIRD;
}
public static void Interpolate(in Vector2FP64 vector1, in Vector2FP64 vector2, double phase, out Vector2FP64 interpolation)
{
double counterphase = 1.0 - phase;
interpolation.x1 = vector1.x1 * counterphase + vector2.x1 * phase;
interpolation.x2 = vector1.x2 * counterphase + vector2.x2 * phase;
}
public static double GetScalarProduct(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2;
}
public static double GetCrossProduct(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
return vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
}
public static double GetAngle(in Vector2FP64 vector1, in Vector2FP64 vector2, AngleUnit unit)
{
double squareModulus1 = vector1.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus1))
{
return 0.0f;
}
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus2 <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus2))
{
return 0.0f;
}
double multiplier = Math.Sqrt(1.0 / (squareModulus1 * squareModulus2));
double x = GetScalarProduct(vector1, vector2);
double y = GetCrossProduct(vector1, vector2);
return RadianFP64.ToUnits(Math.Atan2(y * multiplier, x * multiplier), unit);
}
public static double GetSquareDistance(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
double dx1 = vector1.x1 - vector2.x1;
double dx2 = vector1.x2 - vector2.x2;
return dx1 * dx1 + dx2 * dx2;
}
public static double GetDistance(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
return Math.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreCloseEnough(in Vector2FP64 vector1, in Vector2FP64 vector2, double distanceLimit)
{
return 0.0 <= distanceLimit && GetSquareDistance(vector1, vector2) <= distanceLimit * distanceLimit;
}
public static bool AreClose(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
double squareDistance = GetSquareDistance(vector1, vector2);
if (squareModulus1 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareDistance <= UtilityFP64.SQUARE_EPSYLON;
}
return squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus2;
}
public static bool AreParallel(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON)
{
return true;
}
double crossProduct = GetCrossProduct(vector1, vector2);
return crossProduct * crossProduct <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static bool AreOrthogonal(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON)
{
return true;
}
double scalarProduct = GetScalarProduct(vector1, vector2);
return scalarProduct * scalarProduct <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static Attitude GetAttitude(in Vector2FP64 vector1, in Vector2FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON)
{
return Attitude.ZERO;
}
double squareLimit = UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
double scalarProduct = GetScalarProduct(vector1, vector2);
if (scalarProduct * scalarProduct <= squareLimit)
{
return Attitude.ORTHOGONAL;
}
double crossProduct = GetCrossProduct(vector1, vector2);
if (crossProduct * crossProduct > squareLimit)
{
return Attitude.ANY;
}
return scalarProduct > 0.0 ? Attitude.CO_DIRECTIONAL : Attitude.COUNTER_DIRECTIONAL;
}
}
}

View file

@ -0,0 +1,396 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BGC
{
public struct Vector3FP32
{
public static readonly Vector3FP32 ZERO = new Vector3FP32(0.0f, 0.0f, 0.0f);
public float x1 = 0.0f;
public float x2 = 0.0f;
public float x3 = 0.0f;
public Vector3FP32(float x1, float x2, float x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public Vector3FP32(in Vector3FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public Vector3FP32(in Vector3FP64 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
this.x3 = (float)vector.x3;
}
public readonly float GetSquareModulus()
{
return this.x1 * this.x1 + this.x2 * this.x2 + this.x3 * this.x3;
}
public readonly float GetModulus()
{
return MathF.Sqrt(this.GetSquareModulus());
}
public readonly bool IsZero()
{
return this.GetSquareModulus() <= UtilityFP32.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP32.IsSqareUnit(this.GetSquareModulus());
}
public void Reset()
{
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void MakeOpposite()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public readonly Vector3FP32 GetOpposite()
{
return new Vector3FP32(-this.x1, -this.x2, -this.x3);
}
public bool Normalize()
{
float squareModulus = this.GetSquareModulus();
if (UtilityFP32.IsSqareUnit(squareModulus))
{
return true;
}
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
return true;
}
public void SetValues(float x1, float x2, float x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in Vector3FP64 vector)
{
this.x1 = (float)vector.x1;
this.x2 = (float)vector.x2;
this.x3 = (float)vector.x3;
}
public void SetValues(in Vector3FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public readonly override string ToString()
{
return String.Format("Vector3FP32({0}, {1}, {2})", this.x1, this.x2, this.x3);
}
public static void Swap(ref Vector3FP32 vector1, ref Vector3FP32 vector2)
{
float x1 = vector1.x1;
float x2 = vector1.x2;
float x3 = vector1.x3;
vector1.x1 = vector2.x1;
vector1.x2 = vector2.x2;
vector1.x3 = vector2.x3;
vector2.x1 = x1;
vector2.x2 = x2;
vector2.x3 = x3;
}
public static void Reset(out Vector3FP32 vector)
{
vector.x1 = 0.0f;
vector.x2 = 0.0f;
vector.x3 = 0.0f;
}
public static void GetOpposite(in Vector3FP32 vector, out Vector3FP32 reverted)
{
reverted.x1 = -vector.x1;
reverted.x2 = -vector.x2;
reverted.x3 = -vector.x3;
}
public static bool GetNormalized(in Vector3FP32 vector, out Vector3FP32 normalized)
{
float squareModulus = vector.GetSquareModulus();
if (UtilityFP32.IsSqareUnit(squareModulus))
{
normalized.x1 = vector.x1;
normalized.x2 = vector.x2;
normalized.x3 = vector.x3;
return true;
}
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus))
{
normalized.x1 = 0.0f;
normalized.x2 = 0.0f;
normalized.x3 = 0.0f;
return false;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
normalized.x1 = vector.x1 * multiplier;
normalized.x2 = vector.x2 * multiplier;
normalized.x3 = vector.x3 * multiplier;
return true;
}
public static void Add(in Vector3FP32 vector1, in Vector3FP32 vector2, out Vector3FP32 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
sum.x3 = vector1.x3 + vector2.x3;
}
public static void AddScaled(in Vector3FP32 basicVector, in Vector3FP32 scalableVector, float scale, out Vector3FP32 sum)
{
sum.x1 = basicVector.x1 + scalableVector.x1 * scale;
sum.x2 = basicVector.x2 + scalableVector.x2 * scale;
sum.x3 = basicVector.x3 + scalableVector.x3 * scale;
}
public static void Subtract(in Vector3FP32 minuend, in Vector3FP32 subtrahend, out Vector3FP32 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in Vector3FP32 multiplicand, float multiplier, out Vector3FP32 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
product.x3 = multiplicand.x3 * multiplier;
}
public static void Divide(in Vector3FP32 dividend, float divisor, out Vector3FP32 quotient)
{
Multiply(dividend, 1.0f / divisor, out quotient);
}
public static void GetMeanOfTwo(in Vector3FP32 vector1, in Vector3FP32 vector2, out Vector3FP32 mean)
{
mean.x1 = (vector1.x1 + vector2.x1) * 0.5f;
mean.x2 = (vector1.x2 + vector2.x2) * 0.5f;
mean.x3 = (vector1.x3 + vector2.x3) * 0.5f;
}
public static void GetMeanOfThree(in Vector3FP32 vector1, in Vector3FP32 vector2, in Vector3FP32 vector3, out Vector3FP32 mean)
{
mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP32.ONE_THIRD;
mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP32.ONE_THIRD;
mean.x3 = (vector1.x3 + vector2.x3 + vector3.x3) * UtilityFP32.ONE_THIRD;
}
public static void Interpolate(in Vector3FP32 vector1, in Vector3FP32 vector2, float phase, out Vector3FP32 interpolation)
{
float counterphase = 1.0f - phase;
interpolation.x1 = vector1.x1 * counterphase + vector2.x1 * phase;
interpolation.x2 = vector1.x2 * counterphase + vector2.x2 * phase;
interpolation.x3 = vector1.x3 * counterphase + vector2.x3 * phase;
}
public static float GetScalarProduct(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2 + vector1.x3 * vector2.x3;
}
public static float GetTripleProduct(in Vector3FP32 vector1, in Vector3FP32 vector2, in Vector3FP32 vector3)
{
return vector1.x1 * (vector2.x2 * vector3.x3 - vector2.x3 * vector3.x2)
+ vector1.x2 * (vector2.x3 * vector3.x1 - vector2.x1 * vector3.x3)
+ vector1.x3 * (vector2.x1 * vector3.x2 - vector2.x2 * vector3.x1);
}
public static void GetCrossProduct(in Vector3FP32 vector1, in Vector3FP32 vector2, out Vector3FP32 product)
{
float x1 = vector1.x2 * vector2.x3 - vector1.x3 * vector2.x2;
float x2 = vector1.x3 * vector2.x1 - vector1.x1 * vector2.x3;
float x3 = vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
product.x1 = x1;
product.x2 = x2;
product.x3 = x3;
}
// [a x [b x c]] = b * (a, c) - c * (a, b)
public static void GetDoubleCrossProduct(in Vector3FP32 vector1, in Vector3FP32 vector2, in Vector3FP32 vector3, out Vector3FP32 product)
{
float ac = GetScalarProduct(vector1, vector3);
float ab = GetScalarProduct(vector1, vector2);
product.x1 = ac * vector2.x1 - ab * vector3.x1;
product.x2 = ac * vector2.x2 - ab * vector3.x2;
product.x3 = ac * vector2.x3 - ab * vector3.x3;
}
public static float GetAngle(in Vector3FP32 vector1, in Vector3FP32 vector2, AngleUnit unit)
{
float squareModulus1 = vector1.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus1))
{
return 0.0f;
}
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus2 <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus2))
{
return 0.0f;
}
float multiplier = MathF.Sqrt(1.0f / (squareModulus1 * squareModulus2));
Vector3FP32 crossProduct;
GetCrossProduct(vector1, vector2, out crossProduct);
float x = GetScalarProduct(vector1, vector2);
float y = crossProduct.GetModulus();
return RadianFP32.ToUnits(MathF.Atan2(y * multiplier, x * multiplier), unit);
}
public static float GetSquareDistance(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
float dx1 = vector1.x1 - vector2.x1;
float dx2 = vector1.x2 - vector2.x2;
float dx3 = vector1.x3 - vector2.x3;
return dx1 * dx1 + dx2 * dx2 + dx3 * dx3;
}
public static float GetDistance(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
return MathF.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreCloseEnough(in Vector3FP32 vector1, in Vector3FP32 vector2, float distanceLimit)
{
return 0.0f <= distanceLimit && GetSquareDistance(vector1, vector2) <= distanceLimit * distanceLimit;
}
public static bool AreClose(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
float squareDistance = GetSquareDistance(vector1, vector2);
if (squareModulus1 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareDistance <= UtilityFP32.SQUARE_EPSYLON;
}
return squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus2;
}
public static bool AreParallel(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON)
{
return true;
}
Vector3FP32 crossProduct;
GetCrossProduct(vector1, vector2, out crossProduct);
return crossProduct.GetSquareModulus() <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static bool AreOrthogonal(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON)
{
return true;
}
float scalarProduct = GetScalarProduct(vector1, vector2);
return scalarProduct * scalarProduct <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static Attitude GetAttitude(in Vector3FP32 vector1, in Vector3FP32 vector2)
{
float squareModulus1 = vector1.GetSquareModulus();
float squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON)
{
return Attitude.ZERO;
}
float squareLimit = UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
float scalarProduct = GetScalarProduct(vector1, vector2);
if (scalarProduct * scalarProduct <= squareLimit)
{
return Attitude.ORTHOGONAL;
}
Vector3FP32 crossProduct;
GetCrossProduct(vector1, vector2, out crossProduct);
if (crossProduct.GetSquareModulus() > squareLimit)
{
return Attitude.ANY;
}
return scalarProduct > 0.0f ? Attitude.CO_DIRECTIONAL : Attitude.COUNTER_DIRECTIONAL;
}
}
}

View file

@ -0,0 +1,396 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 1 Feb 2019
*/
namespace BGC
{
public struct Vector3FP64
{
public static readonly Vector3FP64 ZERO = new Vector3FP64(0.0, 0.0, 0.0);
public double x1 = 0.0;
public double x2 = 0.0;
public double x3 = 0.0;
public Vector3FP64(double x1, double x2, double x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public Vector3FP64(in Vector3FP64 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public Vector3FP64(in Vector3FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public readonly double GetSquareModulus()
{
return this.x1 * this.x1 + this.x2 * this.x2 + this.x3 * this.x3;
}
public readonly double GetModulus()
{
return Math.Sqrt(this.GetSquareModulus());
}
public readonly bool IsZero()
{
return this.GetSquareModulus() <= UtilityFP64.SQUARE_EPSYLON;
}
public readonly bool IsUnit()
{
return UtilityFP64.IsSqareUnit(this.GetSquareModulus());
}
public void Reset()
{
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void MakeOpposite()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public readonly Vector3FP64 GetOpposite()
{
return new Vector3FP64(-this.x1, -this.x2, -this.x3);
}
public bool Normalize()
{
double squareModulus = this.GetSquareModulus();
if (UtilityFP64.IsSqareUnit(squareModulus))
{
return true;
}
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
return false;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
return true;
}
public void SetValues(double x1, double x2, double x3)
{
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
}
public void SetValues(in Vector3FP64 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public void SetValues(in Vector3FP32 vector)
{
this.x1 = vector.x1;
this.x2 = vector.x2;
this.x3 = vector.x3;
}
public readonly override string ToString()
{
return String.Format("Vector3FP64({0}, {1}, {2})", this.x1, this.x2, this.x3);
}
public static void Swap(ref Vector3FP64 vector1, ref Vector3FP64 vector2)
{
double x1 = vector1.x1;
double x2 = vector1.x2;
double x3 = vector1.x3;
vector1.x1 = vector2.x1;
vector1.x2 = vector2.x2;
vector1.x3 = vector2.x3;
vector2.x1 = x1;
vector2.x2 = x2;
vector2.x3 = x3;
}
public static void Reset(out Vector3FP64 vector)
{
vector.x1 = 0.0;
vector.x2 = 0.0;
vector.x3 = 0.0;
}
public static void GetOpposite(in Vector3FP64 vector, out Vector3FP64 reverted)
{
reverted.x1 = -vector.x1;
reverted.x2 = -vector.x2;
reverted.x3 = -vector.x3;
}
public static bool GetNormalized(in Vector3FP64 vector, out Vector3FP64 normalized)
{
double squareModulus = vector.GetSquareModulus();
if (UtilityFP64.IsSqareUnit(squareModulus))
{
normalized.x1 = vector.x1;
normalized.x2 = vector.x2;
normalized.x3 = vector.x3;
return true;
}
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus))
{
normalized.x1 = 0.0;
normalized.x2 = 0.0;
normalized.x3 = 0.0;
return false;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
normalized.x1 = vector.x1 * multiplier;
normalized.x2 = vector.x2 * multiplier;
normalized.x3 = vector.x3 * multiplier;
return true;
}
public static void Add(in Vector3FP64 vector1, in Vector3FP64 vector2, out Vector3FP64 sum)
{
sum.x1 = vector1.x1 + vector2.x1;
sum.x2 = vector1.x2 + vector2.x2;
sum.x3 = vector1.x3 + vector2.x3;
}
public static void AddScaled(in Vector3FP64 basicVector, in Vector3FP64 scalableVector, double scale, out Vector3FP64 sum)
{
sum.x1 = basicVector.x1 + scalableVector.x1 * scale;
sum.x2 = basicVector.x2 + scalableVector.x2 * scale;
sum.x3 = basicVector.x3 + scalableVector.x3 * scale;
}
public static void Subtract(in Vector3FP64 minuend, in Vector3FP64 subtrahend, out Vector3FP64 difference)
{
difference.x1 = minuend.x1 - subtrahend.x1;
difference.x2 = minuend.x2 - subtrahend.x2;
difference.x3 = minuend.x3 - subtrahend.x3;
}
public static void Multiply(in Vector3FP64 multiplicand, double multiplier, out Vector3FP64 product)
{
product.x1 = multiplicand.x1 * multiplier;
product.x2 = multiplicand.x2 * multiplier;
product.x3 = multiplicand.x3 * multiplier;
}
public static void Divide(in Vector3FP64 dividend, double divisor, out Vector3FP64 quotient)
{
Multiply(dividend, 1.0 / divisor, out quotient);
}
public static void GetMeanOfTwo(in Vector3FP64 vector1, in Vector3FP64 vector2, out Vector3FP64 mean)
{
mean.x1 = (vector1.x1 + vector2.x1) * 0.5;
mean.x2 = (vector1.x2 + vector2.x2) * 0.5;
mean.x3 = (vector1.x3 + vector2.x3) * 0.5;
}
public static void GetMeanOfThree(in Vector3FP64 vector1, in Vector3FP64 vector2, in Vector3FP64 vector3, out Vector3FP64 mean)
{
mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP64.ONE_THIRD;
mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP64.ONE_THIRD;
mean.x3 = (vector1.x3 + vector2.x3 + vector3.x3) * UtilityFP64.ONE_THIRD;
}
public static void Interpolate(in Vector3FP64 vector1, in Vector3FP64 vector2, double phase, out Vector3FP64 interpolation)
{
double counterphase = 1.0 - phase;
interpolation.x1 = vector1.x1 * counterphase + vector2.x1 * phase;
interpolation.x2 = vector1.x2 * counterphase + vector2.x2 * phase;
interpolation.x3 = vector1.x3 * counterphase + vector2.x3 * phase;
}
public static double GetScalarProduct(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2 + vector1.x3 * vector2.x3;
}
public static double GetTripleProduct(in Vector3FP64 vector1, in Vector3FP64 vector2, in Vector3FP64 vector3)
{
return vector1.x1 * (vector2.x2 * vector3.x3 - vector2.x3 * vector3.x2)
+ vector1.x2 * (vector2.x3 * vector3.x1 - vector2.x1 * vector3.x3)
+ vector1.x3 * (vector2.x1 * vector3.x2 - vector2.x2 * vector3.x1);
}
public static void GetCrossProduct(in Vector3FP64 vector1, in Vector3FP64 vector2, out Vector3FP64 result)
{
double x1 = vector1.x2 * vector2.x3 - vector1.x3 * vector2.x2;
double x2 = vector1.x3 * vector2.x1 - vector1.x1 * vector2.x3;
double x3 = vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
// [a x [b x c]] = b * (a, c) - c * (a, b)
public static void GetDoubleCrossProduct(in Vector3FP64 vector1, in Vector3FP64 vector2, in Vector3FP64 vector3, out Vector3FP64 product)
{
double ac = GetScalarProduct(vector1, vector3);
double ab = GetScalarProduct(vector1, vector2);
product.x1 = ac * vector2.x1 - ab * vector3.x1;
product.x2 = ac * vector2.x2 - ab * vector3.x2;
product.x3 = ac * vector2.x3 - ab * vector3.x3;
}
public static double GetAngle(in Vector3FP64 vector1, in Vector3FP64 vector2, AngleUnit unit)
{
double squareModulus1 = vector1.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus1))
{
return 0.0f;
}
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus2 <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus2))
{
return 0.0f;
}
double multiplier = Math.Sqrt(1.0 / (squareModulus1 * squareModulus2));
Vector3FP64 crossProduct;
GetCrossProduct(vector1, vector2, out crossProduct);
double x = GetScalarProduct(vector1, vector2);
double y = crossProduct.GetModulus();
return RadianFP64.ToUnits(Math.Atan2(y * multiplier, x * multiplier), unit);
}
public static double GetSquareDistance(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
double dx1 = vector1.x1 - vector2.x1;
double dx2 = vector1.x2 - vector2.x2;
double dx3 = vector1.x3 - vector2.x3;
return dx1 * dx1 + dx2 * dx2 + dx3 * dx3;
}
public static double GetDistance(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
return Math.Sqrt(GetSquareDistance(vector1, vector2));
}
public static bool AreCloseEnough(in Vector3FP64 vector1, in Vector3FP64 vector2, double distanceLimit)
{
return 0.0 <= distanceLimit && GetSquareDistance(vector1, vector2) <= distanceLimit * distanceLimit;
}
public static bool AreClose(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
double squareDistance = GetSquareDistance(vector1, vector2);
if (squareModulus1 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT)
{
return squareDistance <= UtilityFP64.SQUARE_EPSYLON;
}
return squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus2;
}
public static bool AreParallel(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON)
{
return true;
}
Vector3FP64 crossProduct;
GetCrossProduct(vector1, vector2, out crossProduct);
return crossProduct.GetSquareModulus() <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static bool AreOrthogonal(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON)
{
return true;
}
double scalarProduct = GetScalarProduct(vector1, vector2);
return scalarProduct * scalarProduct <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
}
public static Attitude GetAttitude(in Vector3FP64 vector1, in Vector3FP64 vector2)
{
double squareModulus1 = vector1.GetSquareModulus();
double squareModulus2 = vector2.GetSquareModulus();
if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON)
{
return Attitude.ZERO;
}
double squareLimit = UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2;
double scalarProduct = GetScalarProduct(vector1, vector2);
if (scalarProduct * scalarProduct <= squareLimit)
{
return Attitude.ORTHOGONAL;
}
Vector3FP64 crossProduct;
GetCrossProduct(vector1, vector2, out crossProduct);
if (crossProduct.GetSquareModulus() > squareLimit)
{
return Attitude.ANY;
}
return scalarProduct > 0.0f ? Attitude.CO_DIRECTIONAL : Attitude.COUNTER_DIRECTIONAL;
}
}
}

348
BasicGeometry/VersorFP32.cs Normal file
View file

@ -0,0 +1,348 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 20 Oct 2024
*/
namespace BGC
{
public struct VersorFP32
{
private float s0 = 1.0f;
private float x1 = 0.0f;
private float x2 = 0.0f;
private float x3 = 0.0f;
public VersorFP32(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
float squareModulus = this.s0 * this.s0 + this.x1 * this.x1 + (this.x2 * this.x2 + this.x3 * this.x3);
if (!UtilityFP32.IsSqareUnit(squareModulus))
{
this.Normalize(squareModulus);
}
}
public VersorFP32(in VersorFP32 versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public VersorFP32(in VersorFP64 versor)
{
this.s0 = (float)versor.GetScalar();
this.x1 = (float)versor.GetX1();
this.x2 = (float)versor.GetX2();
this.x3 = (float)versor.GetX3();
float squareModulus = this.s0 * this.s0 + this.x1 * this.x1 + (this.x2 * this.x2 + this.x3 * this.x3);
if (!UtilityFP32.IsSqareUnit(squareModulus))
{
this.Normalize(squareModulus);
}
}
public readonly float GetScalar()
{
return this.s0;
}
public readonly float GetX1()
{
return this.x1;
}
public readonly float GetX2()
{
return this.x2;
}
public readonly float GetX3()
{
return this.x3;
}
public readonly float GetAngle(AngleUnit unit)
{
if (this.s0 <= -(1.0f - UtilityFP32.EPSYLON) || 1.0f - UtilityFP32.EPSYLON <= this.s0) {
return 0.0f;
}
if (UtilityFP32.IsZero(this.s0))
{
return AngleFP32.GetHalfCircle(unit);
}
return RadianFP32.ToUnits(2.0f * MathF.Acos(this.s0), unit);
}
public readonly bool IsIdle()
{
return this.s0 <= -(1.0f - UtilityFP32.EPSYLON) || (1.0f - UtilityFP32.EPSYLON) <= this.s0;
}
public void Reset()
{
this.s0 = 1.0f;
this.x1 = 0.0f;
this.x2 = 0.0f;
this.x3 = 0.0f;
}
public void MakeOpposite()
{
this.s0 = -this.s0;
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void Shorten()
{
if (this.s0 < 0.0f)
{
this.s0 = -this.s0;
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
}
public void Invert()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void SetValues(float s0, float x1, float x2, float x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
float squareModulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (!UtilityFP32.IsSqareUnit(squareModulus))
{
this.Normalize(squareModulus);
}
}
public void Set(in VersorFP32 versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public void Set(in VersorFP64 versor)
{
this.SetValues((float) versor.GetScalar(), (float) versor.GetX1(), (float) versor.GetX2(), (float) versor.GetX3());
}
private void Normalize(float squareModulus)
{
if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || !float.IsFinite(squareModulus))
{
this.Reset();
return;
}
float multiplier = MathF.Sqrt(1.0f / squareModulus);
this.s0 *= multiplier;
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
}
public static void Combine(in VersorFP32 second, in VersorFP32 first, out VersorFP32 result)
{
LoadValues(
(second.s0 * first.s0 - second.x1 * first.x1) - (second.x2 * first.x2 + second.x3 * first.x3),
(second.x1 * first.s0 + second.s0 * first.x1) - (second.x3 * first.x2 - second.x2 * first.x3),
(second.x2 * first.s0 + second.s0 * first.x2) - (second.x1 * first.x3 - second.x3 * first.x1),
(second.x3 * first.s0 + second.s0 * first.x3) - (second.x2 * first.x1 - second.x1 * first.x2),
out result
);
}
public static void Combine(in VersorFP32 third, in VersorFP32 second, in VersorFP32 first, out VersorFP32 result)
{
float s0 = (second.s0 * first.s0 - second.x1 * first.x1) - (second.x2 * first.x2 + second.x3 * first.x3);
float x1 = (second.x1 * first.s0 + second.s0 * first.x1) - (second.x3 * first.x2 - second.x2 * first.x3);
float x2 = (second.x2 * first.s0 + second.s0 * first.x2) - (second.x1 * first.x3 - second.x3 * first.x1);
float x3 = (second.x3 * first.s0 + second.s0 * first.x3) - (second.x2 * first.x1 - second.x1 * first.x2);
LoadValues(
(third.s0 * s0 - third.x1 * x1) - (third.x2 * x2 + third.x3 * x3),
(third.x1 * s0 + third.s0 * x1) - (third.x3 * x2 - third.x2 * x3),
(third.x2 * s0 + third.s0 * x2) - (third.x1 * x3 - third.x3 * x1),
(third.x3 * s0 + third.s0 * x3) - (third.x2 * x1 - third.x1 * x2),
out result
);
}
public static void Exclude(in VersorFP32 basic, in VersorFP32 excludant, out VersorFP32 result)
{
LoadValues(
(basic.s0 * excludant.s0 + basic.x1 * excludant.x1) + (basic.x2 * excludant.x2 + basic.x3 * excludant.x3),
(basic.x1 * excludant.s0 + basic.x3 * excludant.x2) - (basic.s0 * excludant.x1 + basic.x2 * excludant.x3),
(basic.x2 * excludant.s0 + basic.x1 * excludant.x3) - (basic.s0 * excludant.x2 + basic.x3 * excludant.x1),
(basic.x3 * excludant.s0 + basic.x2 * excludant.x1) - (basic.s0 * excludant.x3 + basic.x1 * excludant.x2),
out result
);
}
public static void GetInverted(in VersorFP32 versor, out VersorFP32 conjugate)
{
conjugate.s0 = versor.s0;
conjugate.x1 = -versor.x1;
conjugate.x2 = -versor.x2;
conjugate.x3 = -versor.x3;
}
public static void GetShortened(in VersorFP32 versor, out VersorFP32 shortened)
{
if (versor.s0 < 0.0f) {
shortened.s0 = -versor.s0;
shortened.x1 = -versor.x1;
shortened.x2 = -versor.x2;
shortened.x3 = -versor.x3;
}
else {
shortened.s0 = versor.s0;
shortened.x1 = versor.x1;
shortened.x2 = versor.x2;
shortened.x3 = versor.x3;
}
}
public static void GetRotationMatrix(in VersorFP32 versor, out Matrix3x3FP32 matrix)
{
float s0s0 = versor.s0 * versor.s0;
float x1x1 = versor.x1 * versor.x1;
float x2x2 = versor.x1 * versor.x2;
float x3x3 = versor.x1 * versor.x3;
float s0x1 = versor.s0 * versor.x1;
float s0x2 = versor.s0 * versor.x2;
float s0x3 = versor.s0 * versor.x3;
float x1x2 = versor.x1 * versor.x2;
float x1x3 = versor.x1 * versor.x3;
float x2x3 = versor.x2 * versor.x3;
matrix.r1c1 = s0s0 + x1x1 - (x2x2 + x3x3);
matrix.r2c2 = s0s0 + x2x2 - (x1x1 + x3x3);
matrix.r3c3 = s0s0 + x3x3 - (x1x1 + x2x2);
matrix.r1c2 = 2.0f * (x1x2 - s0x3);
matrix.r2c3 = 2.0f * (x2x3 - s0x1);
matrix.r3c1 = 2.0f * (x1x3 - s0x2);
matrix.r2c1 = 2.0f * (x1x2 + s0x3);
matrix.r3c2 = 2.0f * (x2x3 + s0x1);
matrix.r1c3 = 2.0f * (x1x3 + s0x2);
}
public static void GetReverseMatrix(in VersorFP32 versor, out Matrix3x3FP32 matrix)
{
float s0s0 = versor.s0 * versor.s0;
float x1x1 = versor.x1 * versor.x1;
float x2x2 = versor.x1 * versor.x2;
float x3x3 = versor.x1 * versor.x3;
float s0x1 = versor.s0 * versor.x1;
float s0x2 = versor.s0 * versor.x2;
float s0x3 = versor.s0 * versor.x3;
float x1x2 = versor.x1 * versor.x2;
float x1x3 = versor.x1 * versor.x3;
float x2x3 = versor.x2 * versor.x3;
matrix.r1c1 = s0s0 + x1x1 - (x2x2 + x3x3);
matrix.r2c2 = s0s0 + x2x2 - (x1x1 + x3x3);
matrix.r3c3 = s0s0 + x3x3 - (x1x1 + x2x2);
matrix.r1c2 = 2.0f * (x1x2 + s0x3);
matrix.r2c3 = 2.0f * (x2x3 + s0x1);
matrix.r3c1 = 2.0f * (x1x3 + s0x2);
matrix.r2c1 = 2.0f * (x1x2 - s0x3);
matrix.r3c2 = 2.0f * (x2x3 - s0x1);
matrix.r1c3 = 2.0f * (x1x3 - s0x2);
}
public static void GetBothMatrices(in VersorFP32 versor, out Matrix3x3FP32 matrix, out Matrix3x3FP32 reverse)
{
GetReverseMatrix(versor, out reverse);
Matrix3x3FP32.MakeTransposed(reverse, out matrix);
}
public static void Turn(in VersorFP32 versor, in Vector3FP32 vector, out Vector3FP32 result)
{
float tx1 = 2.0f * (versor.x2 * vector.x3 - versor.x3 * vector.x2);
float tx2 = 2.0f * (versor.x3 * vector.x1 - versor.x1 * vector.x3);
float tx3 = 2.0f * (versor.x1 * vector.x2 - versor.x2 * vector.x1);
float x1 = vector.x1 + tx1 * versor.s0 + (versor.x2 * tx3 - versor.x3 * tx2);
float x2 = vector.x2 + tx2 * versor.s0 + (versor.x3 * tx1 - versor.x1 * tx3);
float x3 = vector.x3 + tx3 * versor.s0 + (versor.x1 * tx2 - versor.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public static void TurnBack(in VersorFP32 versor, in Vector3FP32 vector, out Vector3FP32 result)
{
float tx1 = 2.0f * (versor.x2 * vector.x3 - versor.x3 * vector.x2);
float tx2 = 2.0f * (versor.x3 * vector.x1 - versor.x1 * vector.x3);
float tx3 = 2.0f * (versor.x1 * vector.x2 - versor.x2 * vector.x1);
float x1 = vector.x1 - tx1 * versor.s0 + (versor.x2 * tx3 - versor.x3 * tx2);
float x2 = vector.x2 - tx2 * versor.s0 + (versor.x3 * tx1 - versor.x1 * tx3);
float x3 = vector.x3 - tx3 * versor.s0 + (versor.x1 * tx2 - versor.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public static void Reset(out VersorFP32 result)
{
result.s0 = 1.0f;
result.x1 = 0.0f;
result.x2 = 0.0f;
result.x3 = 0.0f;
}
public static void LoadValues(float s0, float x1, float x2, float x3, out VersorFP32 result)
{
float squareModulus = s0 * s0 + x1 * x1 + (x2 * x2 + x3 * x3);
result.s0 = s0;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
if (!UtilityFP32.IsSqareUnit(squareModulus))
{
result.Normalize(squareModulus);
}
}
}
}

338
BasicGeometry/VersorFP64.cs Normal file
View file

@ -0,0 +1,338 @@
/*
* Author: Andrey Pokidov
* License: Apache-2.0
* Date: 20 Oct 2024
*/
namespace BGC
{
public struct VersorFP64
{
private double s0 = 1.0;
private double x1 = 0.0;
private double x2 = 0.0;
private double x3 = 0.0;
public VersorFP64(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
double squareModulus = this.s0 * this.s0 + this.x1 * this.x1 + (this.x2 * this.x2 + this.x3 * this.x3);
if (!UtilityFP64.IsSqareUnit(squareModulus))
{
this.Normalize(squareModulus);
}
}
public VersorFP64(in VersorFP64 versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public VersorFP64(in VersorFP32 versor)
{
this.s0 = versor.GetScalar();
this.x1 = versor.GetX1();
this.x2 = versor.GetX2();
this.x3 = versor.GetX3();
double squareModulus = this.s0 * this.s0 + this.x1 * this.x1 + (this.x2 * this.x2 + this.x3 * this.x3);
if (!UtilityFP64.IsSqareUnit(squareModulus))
{
this.Normalize(squareModulus);
}
}
public readonly double GetScalar()
{
return this.s0;
}
public readonly double GetX1()
{
return this.x1;
}
public readonly double GetX2()
{
return this.x2;
}
public readonly double GetX3()
{
return this.x3;
}
public readonly double GetAngle(AngleUnit unit)
{
if (this.s0 <= -(1.0 - UtilityFP64.EPSYLON) || 1.0 - UtilityFP64.EPSYLON <= this.s0) {
return 0.0;
}
if (UtilityFP64.IsZero(this.s0))
{
return AngleFP64.GetHalfCircle(unit);
}
return RadianFP64.ToUnits(2.0 * Math.Acos(this.s0), unit);
}
public readonly bool IsIdentity()
{
return this.s0 <= -(1.0 - UtilityFP64.EPSYLON) || (1.0 - UtilityFP64.EPSYLON) <= this.s0;
}
public void Reset()
{
this.s0 = 1.0;
this.x1 = 0.0;
this.x2 = 0.0;
this.x3 = 0.0;
}
public void MakeOpposite()
{
}
public void Shorten()
{
if (this.s0 < 0.0)
{
this.s0 = -this.s0;
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
}
public void Invert()
{
this.x1 = -this.x1;
this.x2 = -this.x2;
this.x3 = -this.x3;
}
public void SetValues(double s0, double x1, double x2, double x3)
{
this.s0 = s0;
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
double squareModulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
if (!UtilityFP64.IsSqareUnit(squareModulus))
{
this.Normalize(squareModulus);
}
}
public void Set(in VersorFP64 versor)
{
this.s0 = versor.s0;
this.x1 = versor.x1;
this.x2 = versor.x2;
this.x3 = versor.x3;
}
public void Set(in VersorFP32 versor)
{
this.SetValues(versor.GetScalar(), versor.GetX1(), versor.GetX2(), versor.GetX3());
}
private void Normalize(double squareModulus)
{
if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || !double.IsFinite(squareModulus))
{
this.Reset();
return;
}
double multiplier = Math.Sqrt(1.0 / squareModulus);
this.s0 *= multiplier;
this.x1 *= multiplier;
this.x2 *= multiplier;
this.x3 *= multiplier;
}
public static void Combine(in VersorFP64 second, in VersorFP64 first, out VersorFP64 result)
{
LoadValues(
(second.s0 * first.s0 - second.x1 * first.x1) - (second.x2 * first.x2 + second.x3 * first.x3),
(second.x1 * first.s0 + second.s0 * first.x1) - (second.x3 * first.x2 - second.x2 * first.x3),
(second.x2 * first.s0 + second.s0 * first.x2) - (second.x1 * first.x3 - second.x3 * first.x1),
(second.x3 * first.s0 + second.s0 * first.x3) - (second.x2 * first.x1 - second.x1 * first.x2),
out result
);
}
public static void Combine3(in VersorFP64 third, in VersorFP64 second, in VersorFP64 first, out VersorFP64 result)
{
double s0 = (second.s0 * first.s0 - second.x1 * first.x1) - (second.x2 * first.x2 + second.x3 * first.x3);
double x1 = (second.x1 * first.s0 + second.s0 * first.x1) - (second.x3 * first.x2 - second.x2 * first.x3);
double x2 = (second.x2 * first.s0 + second.s0 * first.x2) - (second.x1 * first.x3 - second.x3 * first.x1);
double x3 = (second.x3 * first.s0 + second.s0 * first.x3) - (second.x2 * first.x1 - second.x1 * first.x2);
LoadValues(
(third.s0 * s0 - third.x1 * x1) - (third.x2 * x2 + third.x3 * x3),
(third.x1 * s0 + third.s0 * x1) - (third.x3 * x2 - third.x2 * x3),
(third.x2 * s0 + third.s0 * x2) - (third.x1 * x3 - third.x3 * x1),
(third.x3 * s0 + third.s0 * x3) - (third.x2 * x1 - third.x1 * x2),
out result
);
}
public static void Exclude(in VersorFP64 basic, in VersorFP64 excludant, out VersorFP64 result)
{
LoadValues(
(basic.s0 * excludant.s0 + basic.x1 * excludant.x1) + (basic.x2 * excludant.x2 + basic.x3 * excludant.x3),
(basic.x1 * excludant.s0 + basic.x3 * excludant.x2) - (basic.s0 * excludant.x1 + basic.x2 * excludant.x3),
(basic.x2 * excludant.s0 + basic.x1 * excludant.x3) - (basic.s0 * excludant.x2 + basic.x3 * excludant.x1),
(basic.x3 * excludant.s0 + basic.x2 * excludant.x1) - (basic.s0 * excludant.x3 + basic.x1 * excludant.x2),
out result
);
}
public static void MakeInverted(in VersorFP64 versor, out VersorFP64 conjugate)
{
conjugate.s0 = versor.s0;
conjugate.x1 = -versor.x1;
conjugate.x2 = -versor.x2;
conjugate.x3 = -versor.x3;
}
public static void MakeShortened(in VersorFP64 versor, out VersorFP64 shortened)
{
if (versor.s0 < 0.0) {
shortened.s0 = -versor.s0;
shortened.x1 = -versor.x1;
shortened.x2 = -versor.x2;
shortened.x3 = -versor.x3;
}
else {
shortened.s0 = versor.s0;
shortened.x1 = versor.x1;
shortened.x2 = versor.x2;
shortened.x3 = versor.x3;
}
}
public static void MakeRotationMatrix(in VersorFP64 versor, out Matrix3x3FP64 matrix)
{
double s0s0 = versor.s0 * versor.s0;
double x1x1 = versor.x1 * versor.x1;
double x2x2 = versor.x1 * versor.x2;
double x3x3 = versor.x1 * versor.x3;
double s0x1 = versor.s0 * versor.x1;
double s0x2 = versor.s0 * versor.x2;
double s0x3 = versor.s0 * versor.x3;
double x1x2 = versor.x1 * versor.x2;
double x1x3 = versor.x1 * versor.x3;
double x2x3 = versor.x2 * versor.x3;
matrix.r1c1 = s0s0 + x1x1 - (x2x2 + x3x3);
matrix.r2c2 = s0s0 + x2x2 - (x1x1 + x3x3);
matrix.r3c3 = s0s0 + x3x3 - (x1x1 + x2x2);
matrix.r1c2 = 2.0 * (x1x2 - s0x3);
matrix.r2c3 = 2.0 * (x2x3 - s0x1);
matrix.r3c1 = 2.0 * (x1x3 - s0x2);
matrix.r2c1 = 2.0 * (x1x2 + s0x3);
matrix.r3c2 = 2.0 * (x2x3 + s0x1);
matrix.r1c3 = 2.0 * (x1x3 + s0x2);
}
public static void MakeReverseMatrix(in VersorFP64 versor, out Matrix3x3FP64 matrix)
{
double s0s0 = versor.s0 * versor.s0;
double x1x1 = versor.x1 * versor.x1;
double x2x2 = versor.x1 * versor.x2;
double x3x3 = versor.x1 * versor.x3;
double s0x1 = versor.s0 * versor.x1;
double s0x2 = versor.s0 * versor.x2;
double s0x3 = versor.s0 * versor.x3;
double x1x2 = versor.x1 * versor.x2;
double x1x3 = versor.x1 * versor.x3;
double x2x3 = versor.x2 * versor.x3;
matrix.r1c1 = s0s0 + x1x1 - (x2x2 + x3x3);
matrix.r2c2 = s0s0 + x2x2 - (x1x1 + x3x3);
matrix.r3c3 = s0s0 + x3x3 - (x1x1 + x2x2);
matrix.r1c2 = 2.0 * (x1x2 + s0x3);
matrix.r2c3 = 2.0 * (x2x3 + s0x1);
matrix.r3c1 = 2.0 * (x1x3 + s0x2);
matrix.r2c1 = 2.0 * (x1x2 - s0x3);
matrix.r3c2 = 2.0 * (x2x3 - s0x1);
matrix.r1c3 = 2.0 * (x1x3 - s0x2);
}
public static void Turn(in VersorFP64 versor, in Vector3FP64 vector, out Vector3FP64 result)
{
double tx1 = 2.0 * (versor.x2 * vector.x3 - versor.x3 * vector.x2);
double tx2 = 2.0 * (versor.x3 * vector.x1 - versor.x1 * vector.x3);
double tx3 = 2.0 * (versor.x1 * vector.x2 - versor.x2 * vector.x1);
double x1 = vector.x1 + tx1 * versor.s0 + (versor.x2 * tx3 - versor.x3 * tx2);
double x2 = vector.x2 + tx2 * versor.s0 + (versor.x3 * tx1 - versor.x1 * tx3);
double x3 = vector.x3 + tx3 * versor.s0 + (versor.x1 * tx2 - versor.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public static void TurnBack(in VersorFP64 versor, in Vector3FP64 vector, out Vector3FP64 result)
{
double tx1 = 2.0 * (versor.x2 * vector.x3 - versor.x3 * vector.x2);
double tx2 = 2.0 * (versor.x3 * vector.x1 - versor.x1 * vector.x3);
double tx3 = 2.0 * (versor.x1 * vector.x2 - versor.x2 * vector.x1);
double x1 = vector.x1 - tx1 * versor.s0 + (versor.x2 * tx3 - versor.x3 * tx2);
double x2 = vector.x2 - tx2 * versor.s0 + (versor.x3 * tx1 - versor.x1 * tx3);
double x3 = vector.x3 - tx3 * versor.s0 + (versor.x1 * tx2 - versor.x2 * tx1);
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
}
public static void LoadIdentity(out VersorFP64 result)
{
result.s0 = 1.0;
result.x1 = 0.0;
result.x2 = 0.0;
result.x3 = 0.0;
}
public static void LoadValues(double s0, double x1, double x2, double x3, out VersorFP64 result)
{
double squareModulus = s0 * s0 + x1 * x1 + (x2 * x2 + x3 * x3);
result.s0 = s0;
result.x1 = x1;
result.x2 = x2;
result.x3 = x3;
if (!UtilityFP64.IsSqareUnit(squareModulus))
{
result.Normalize(squareModulus);
}
}
}
}

View file

@ -2,18 +2,19 @@
using System;
using System.ComponentModel;
using System.Diagnostics;
using BasicGeometry;
using System.Numerics;
using BGC;
public static class Program
{
private static FP32Versor[] AllocateVersors(int amount)
private static VersorFP32[] AllocateVersors(int amount)
{
return new FP32Versor[amount];
return new VersorFP32[amount];
}
private static FP32Versor[] MakeZeroVersors(int amount)
private static VersorFP32[] MakeZeroVersors(int amount)
{
FP32Versor[] versors = AllocateVersors(amount);
VersorFP32[] versors = AllocateVersors(amount);
for (int i = 0; i < amount; i++)
{
@ -23,15 +24,15 @@ public static class Program
return versors;
}
private static FP32Versor[] MakeRandomVersors(int amount)
private static VersorFP32[] MakeRandomVersors(int amount)
{
Random randomizer = new Random(Environment.TickCount);
FP32Versor[] versors = AllocateVersors(amount);
VersorFP32[] versors = AllocateVersors(amount);
for (int i = 0; i < amount; i++)
{
versors[i] = new FP32Versor(
versors[i] = new VersorFP32(
randomizer.NextSingle(),
randomizer.NextSingle(),
randomizer.NextSingle(),
@ -42,18 +43,18 @@ public static class Program
return versors;
}
private static void PrintVersor(in FP32Versor versor)
private static void PrintVersor(in VersorFP32 versor)
{
Console.WriteLine("({0}, {1}, {2}, {3})", versor.GetScalar(), versor.GetX1(), versor.GetX2(), versor.GetX3());
}
public static int Main()
{
int amount = 1000000;
const int amount = 1000000;
FP32Versor[] versors1 = MakeRandomVersors(amount);
FP32Versor[] versors2 = MakeRandomVersors(amount);
FP32Versor[] results = MakeZeroVersors(amount);
VersorFP32[] versors1 = MakeRandomVersors(amount);
VersorFP32[] versors2 = MakeRandomVersors(amount);
VersorFP32[] results = MakeZeroVersors(amount);
long start, end;
@ -63,7 +64,7 @@ public static class Program
{
for (int i = 0; i < amount; i++)
{
FP32Versor.Combine(versors1[i], versors2[i], out results[i]);
VersorFP32.Combine(versors1[i], versors2[i], out results[i]);
}
}

View file

@ -1,19 +0,0 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System;
using System.IO;
using BasicGeometry;
namespace BasicGeometryTest
{
[TestClass]
public class FP32Vector2Test
{
[TestMethod]
public void TestInitialization()
{
FP32Vector2 vector = new FP32Vector2(1.0f, 2.0f);
}
}
}

View file

@ -0,0 +1,48 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using BGC;
namespace BasicGeometryTest
{
[TestClass]
public class Vector2InitTest
{
[TestMethod]
public void InitVector2FP32()
{
Vector2FP32 vector = new Vector2FP32(1.0f, 2.0f);
Assert.AreEqual(vector.x1, 1.0f);
Assert.AreEqual(vector.x2, 2.0f);
vector.Reset();
Assert.AreEqual(vector.x1, 0.0f);
Assert.AreEqual(vector.x2, 0.0f);
vector.SetValues(-5.02f, -200.7f);
Assert.AreEqual(vector.x1, -5.02f);
Assert.AreEqual(vector.x2, -200.7f);
}
[TestMethod]
public void InitVector2FP64()
{
Vector2FP64 vector = new Vector2FP64(1.0, 2.0);
Assert.AreEqual(vector.x1, 1.0);
Assert.AreEqual(vector.x2, 2.0);
vector.Reset();
Assert.AreEqual(vector.x1, 0.0);
Assert.AreEqual(vector.x2, 0.0);
vector.SetValues(-5.79, -200.2);
Assert.AreEqual(vector.x1, -5.79);
Assert.AreEqual(vector.x2, -200.2);
}
}
}

View file

@ -0,0 +1,50 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using BGC;
namespace BasicGeometryTest.Vector2
{
[TestClass]
public class Vector2IsZeroTest
{
[TestMethod]
public void IsZeroFP32()
{
Vector2FP32 vector = new Vector2FP32();
Assert.IsTrue(vector.IsZero());
vector.SetValues(UtilityFP32.EPSYLON * 0.75f, 0.0f);
Assert.IsTrue(vector.IsZero());
vector.SetValues(-UtilityFP32.EPSYLON * 0.5f, -UtilityFP32.EPSYLON * 0.5f);
Assert.IsTrue(vector.IsZero());
vector.SetValues(-UtilityFP32.EPSYLON * 1.25f, -UtilityFP32.EPSYLON * 1.25f);
Assert.IsFalse(vector.IsZero());
}
[TestMethod]
public void IsZeroFP64()
{
Vector2FP64 vector = new Vector2FP64();
Assert.IsTrue(vector.IsZero());
vector.SetValues(UtilityFP64.EPSYLON * 0.75, 0.0);
Assert.IsTrue(vector.IsZero());
vector.SetValues(-UtilityFP64.EPSYLON * 0.5, UtilityFP64.EPSYLON * 0.5);
Assert.IsTrue(vector.IsZero());
vector.SetValues(UtilityFP64.EPSYLON * 1.25, UtilityFP64.EPSYLON * 1.25);
Assert.IsFalse(vector.IsZero());
}
}
}