203 lines
7 KiB
C#
203 lines
7 KiB
C#
using System;
|
|
|
|
namespace Geometry
|
|
{
|
|
public struct SPQuaternion
|
|
{
|
|
public float s0, x1, x2, x3;
|
|
|
|
public SPQuaternion(float s0, float x1, float x2, float x3)
|
|
{
|
|
this.s0 = s0;
|
|
this.x1 = x1;
|
|
this.x2 = x2;
|
|
this.x3 = x3;
|
|
}
|
|
|
|
public SPQuaternion(in SPQuaternion quaternion)
|
|
{
|
|
this.s0 = quaternion.s0;
|
|
this.x1 = quaternion.x1;
|
|
this.x2 = quaternion.x2;
|
|
this.x3 = quaternion.x3;
|
|
}
|
|
|
|
public SPQuaternion(in DPQuaternion quaternion)
|
|
{
|
|
this.s0 = (float)quaternion.s0;
|
|
this.x1 = (float)quaternion.x1;
|
|
this.x2 = (float)quaternion.x2;
|
|
this.x3 = (float)quaternion.x3;
|
|
}
|
|
|
|
public void Reset()
|
|
{
|
|
this.s0 = 0.0f;
|
|
this.x1 = 0.0f;
|
|
this.x2 = 0.0f;
|
|
this.x3 = 0.0f;
|
|
}
|
|
|
|
public void Conjugate()
|
|
{
|
|
this.x1 = -this.x1;
|
|
this.x2 = -this.x2;
|
|
this.x3 = -this.x3;
|
|
}
|
|
|
|
public readonly void GetConjugate(out SPQuaternion conjugated)
|
|
{
|
|
conjugated.s0 = this.s0;
|
|
conjugated.x1 = -this.x1;
|
|
conjugated.x2 = -this.x2;
|
|
conjugated.x3 = -this.x3;
|
|
}
|
|
|
|
public void SetValues(float s0, float x1, float x2, float x3)
|
|
{
|
|
this.s0 = s0;
|
|
this.x1 = x1;
|
|
this.x2 = x2;
|
|
this.x3 = x3;
|
|
}
|
|
|
|
public void SetValues(in SPQuaternion quaternion)
|
|
{
|
|
this.s0 = quaternion.s0;
|
|
this.x1 = quaternion.x1;
|
|
this.x2 = quaternion.x2;
|
|
this.x3 = quaternion.x3;
|
|
}
|
|
|
|
public void SetValues(in DPQuaternion quaternion)
|
|
{
|
|
this.s0 = (float)quaternion.s0;
|
|
this.x1 = (float)quaternion.x1;
|
|
this.x2 = (float)quaternion.x2;
|
|
this.x3 = (float)quaternion.x3;
|
|
}
|
|
|
|
public readonly void MakeRotationMatrix(out SPMatrix3x3 matrix)
|
|
{
|
|
float s0s0 = this.s0 * this.s0;
|
|
float x1x1 = this.x1 * this.x1;
|
|
float x2x2 = this.x2 * this.x2;
|
|
float x3x3 = this.x3 * this.x3;
|
|
|
|
float squareModule = (s0s0 + x1x1) + (x2x2 + x3x3);
|
|
|
|
if (-SPUtility.EPSYLON <= squareModule && squareModule <= SPUtility.EPSYLON)
|
|
{
|
|
SPMatrix3x3.LoadIdentity(out matrix);
|
|
return;
|
|
}
|
|
|
|
float corrector1;
|
|
float corrector2;
|
|
|
|
if (1.0f - SPUtility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + SPUtility.TWO_EPSYLON) {
|
|
corrector1 = 2.0f - squareModule;
|
|
corrector2 = 2.0f * corrector1;
|
|
}
|
|
else {
|
|
corrector1 = 1.0f / squareModule;
|
|
corrector2 = 2.0f / squareModule;
|
|
}
|
|
|
|
float s0x1 = this.s0 * this.x1;
|
|
float s0x2 = this.s0 * this.x2;
|
|
float s0x3 = this.s0 * this.x3;
|
|
float x1x2 = this.x1 * this.x2;
|
|
float x1x3 = this.x1 * this.x3;
|
|
float x2x3 = this.x2 * this.x3;
|
|
|
|
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
|
|
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
|
|
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
|
|
|
|
matrix.r1c2 = corrector2 * (x1x2 - s0x3);
|
|
matrix.r2c3 = corrector2 * (x2x3 - s0x1);
|
|
matrix.r3c1 = corrector2 * (x1x3 - s0x2);
|
|
|
|
matrix.r2c1 = corrector2 * (x1x2 + s0x3);
|
|
matrix.r3c2 = corrector2 * (x2x3 + s0x1);
|
|
matrix.r1c3 = corrector2 * (x1x3 + s0x2);
|
|
}
|
|
|
|
public readonly void MakeReverseMatrix(out SPMatrix3x3 matrix)
|
|
{
|
|
float s0s0 = this.s0 * this.s0;
|
|
float x1x1 = this.x1 * this.x1;
|
|
float x2x2 = this.x2 * this.x2;
|
|
float x3x3 = this.x3 * this.x3;
|
|
|
|
float squareModule = (s0s0 + x1x1) + (x2x2 + x3x3);
|
|
|
|
if (-SPUtility.EPSYLON <= squareModule && squareModule <= SPUtility.EPSYLON)
|
|
{
|
|
SPMatrix3x3.LoadIdentity(out matrix);
|
|
return;
|
|
}
|
|
|
|
float corrector1;
|
|
float corrector2;
|
|
|
|
if (1.0f - SPUtility.TWO_EPSYLON <= squareModule && squareModule <= 1.0f + SPUtility.TWO_EPSYLON) {
|
|
corrector1 = 2.0f - squareModule;
|
|
corrector2 = 2.0f * corrector1;
|
|
}
|
|
else {
|
|
corrector1 = 1.0f / squareModule;
|
|
corrector2 = 2.0f / squareModule;
|
|
}
|
|
|
|
float s0x1 = this.s0 * this.x1;
|
|
float s0x2 = this.s0 * this.x2;
|
|
float s0x3 = this.s0 * this.x3;
|
|
float x1x2 = this.x1 * this.x2;
|
|
float x1x3 = this.x1 * this.x3;
|
|
float x2x3 = this.x2 * this.x3;
|
|
|
|
matrix.r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
|
|
matrix.r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
|
|
matrix.r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
|
|
|
|
matrix.r1c2 = corrector2 * (x1x2 + s0x3);
|
|
matrix.r2c3 = corrector2 * (x2x3 + s0x1);
|
|
matrix.r3c1 = corrector2 * (x1x3 + s0x2);
|
|
|
|
matrix.r2c1 = corrector2 * (x1x2 - s0x3);
|
|
matrix.r3c2 = corrector2 * (x2x3 - s0x1);
|
|
matrix.r1c3 = corrector2 * (x1x3 - s0x2);
|
|
}
|
|
|
|
public static void Add(in SPQuaternion quaternion1, in SPQuaternion quaternion2, out SPQuaternion sum)
|
|
{
|
|
sum.s0 = quaternion1.s0 + quaternion2.s0;
|
|
sum.x1 = quaternion1.x1 + quaternion2.x1;
|
|
sum.x2 = quaternion1.x2 + quaternion2.x2;
|
|
sum.x3 = quaternion1.x3 + quaternion2.x3;
|
|
}
|
|
|
|
public static void Subtract(in SPQuaternion minuend, in SPQuaternion subtrahend, out SPQuaternion difference)
|
|
{
|
|
difference.s0 = minuend.s0 - subtrahend.s0;
|
|
difference.x1 = minuend.x1 - subtrahend.x1;
|
|
difference.x2 = minuend.x2 - subtrahend.x2;
|
|
difference.x3 = minuend.x3 - subtrahend.x3;
|
|
}
|
|
|
|
public static void Multiply(in SPQuaternion left, in SPQuaternion right, out SPQuaternion product)
|
|
{
|
|
float s0 = (left.s0 * right.s0 - left.x1 * right.x1) - (left.x2 * right.x2 + left.x3 * right.x3);
|
|
float x1 = (left.x1 * right.s0 + left.s0 * right.x1) - (left.x3 * right.x2 - left.x2 * right.x3);
|
|
float x2 = (left.x2 * right.s0 + left.s0 * right.x2) - (left.x1 * right.x3 - left.x3 * right.x1);
|
|
float x3 = (left.x3 * right.s0 + left.s0 * right.x3) - (left.x2 * right.x1 - left.x1 * right.x2);
|
|
|
|
product.s0 = s0;
|
|
product.x1 = x1;
|
|
product.x2 = x2;
|
|
product.x3 = x3;
|
|
}
|
|
}
|
|
}
|