/* * Author: Andrey Pokidov * License: Apache-2.0 * Date: 1 Feb 2019 */ namespace BGC { public struct Vector2FP64 { public static readonly Vector2FP64 ZERO = new Vector2FP64(0.0, 0.0); public double x1 = 0.0; public double x2 = 0.0; public Vector2FP64(double x1, double x2) { this.x1 = x1; this.x2 = x2; } public Vector2FP64(in Vector2FP64 vector) { this.x1 = vector.x1; this.x2 = vector.x2; } public Vector2FP64(in Vector2FP32 vector) { this.x1 = vector.x1; this.x2 = vector.x2; } public readonly double GetSquareModulus() { return this.x1 * this.x1 + this.x2 * this.x2; } public readonly double GetModulus() { return Math.Sqrt(this.GetSquareModulus()); } public readonly bool IsZero() { return this.GetSquareModulus() <= UtilityFP64.SQUARE_EPSYLON; } public readonly bool IsUnit() { return UtilityFP64.IsSqareUnit(this.GetSquareModulus()); } public void Reset() { this.x1 = 0.0; this.x2 = 0.0; } public void MakeOpposite() { this.x1 = -this.x1; this.x2 = -this.x2; } public readonly Vector2FP64 GetOpposite() { return new Vector2FP64(-this.x1, -this.x2); } public bool Normalize() { double squareModulus = this.GetSquareModulus(); if (UtilityFP64.IsSqareUnit(squareModulus)) { return true; } if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus)) { return false; } double multiplier = Math.Sqrt(1.0 / squareModulus); this.x1 *= multiplier; this.x2 *= multiplier; return true; } public void SetValues(double x1, double x2) { this.x1 = x1; this.x2 = x2; } public void SetValues(in Vector2FP64 vector) { this.x1 = vector.x1; this.x2 = vector.x2; } public void SetValues(in Vector2FP32 vector) { this.x1 = vector.x1; this.x2 = vector.x2; } public readonly override string ToString() { return String.Format("Vector2FP64({0}, {1})", this.x1, this.x2); } public static void Swap(ref Vector2FP64 vector1, ref Vector2FP64 vector2) { double x1 = vector1.x1; double x2 = vector1.x2; vector1.x1 = vector2.x1; vector1.x2 = vector2.x2; vector2.x1 = x1; vector2.x2 = x2; } public static void Reset(out Vector2FP64 vector) { vector.x1 = 0.0; vector.x2 = 0.0; } public static void GetOpposite(in Vector2FP64 vector, out Vector2FP64 reverted) { reverted.x1 = -vector.x1; reverted.x2 = -vector.x2; } public static bool GetNormalized(in Vector2FP64 vector, out Vector2FP64 normalized) { double squareModulus = vector.GetSquareModulus(); if (UtilityFP64.IsSqareUnit(squareModulus)) { normalized.x1 = vector.x1; normalized.x2 = vector.x2; return true; } if (squareModulus <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus)) { normalized.x1 = 0.0; normalized.x2 = 0.0; return false; } double multiplier = Math.Sqrt(1.0 / squareModulus); normalized.x1 = vector.x1 * multiplier; normalized.x2 = vector.x2 * multiplier; return true; } public static void Add(in Vector2FP64 vector1, in Vector2FP64 vector2, out Vector2FP64 sum) { sum.x1 = vector1.x1 + vector2.x1; sum.x2 = vector1.x2 + vector2.x2; } public static void AddScaled(in Vector2FP64 basicVector, in Vector2FP64 scalableVector, double scale, out Vector2FP64 sum) { sum.x1 = basicVector.x1 + scalableVector.x1 * scale; sum.x2 = basicVector.x2 + scalableVector.x2 * scale; } public static void Subtract(in Vector2FP64 minuend, in Vector2FP64 subtrahend, out Vector2FP64 difference) { difference.x1 = minuend.x1 - subtrahend.x1; difference.x2 = minuend.x2 - subtrahend.x2; } public static void Multiply(in Vector2FP64 multiplicand, double multiplier, out Vector2FP64 product) { product.x1 = multiplicand.x1 * multiplier; product.x2 = multiplicand.x2 * multiplier; } public static void Divide(in Vector2FP64 dividend, double divisor, out Vector2FP64 quotient) { Multiply(dividend, 1.0 / divisor, out quotient); } public static void GetMeanOfTwo(in Vector2FP64 vector1, in Vector2FP64 vector2, out Vector2FP64 mean) { mean.x1 = (vector1.x1 + vector2.x1) * 0.5; mean.x2 = (vector1.x2 + vector2.x2) * 0.5; } public static void GetMeanOfThree(in Vector2FP64 vector1, in Vector2FP64 vector2, in Vector2FP64 vector3, out Vector2FP64 mean) { mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP64.ONE_THIRD; mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP64.ONE_THIRD; } public static void Interpolate(in Vector2FP64 vector1, in Vector2FP64 vector2, double phase, out Vector2FP64 interpolation) { double counterphase = 1.0 - phase; interpolation.x1 = vector1.x1 * counterphase + vector2.x1 * phase; interpolation.x2 = vector1.x2 * counterphase + vector2.x2 * phase; } public static double GetScalarProduct(in Vector2FP64 vector1, in Vector2FP64 vector2) { return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2; } public static double GetCrossProduct(in Vector2FP64 vector1, in Vector2FP64 vector2) { return vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1; } public static double GetAngle(in Vector2FP64 vector1, in Vector2FP64 vector2, AngleUnit unit) { double squareModulus1 = vector1.GetSquareModulus(); if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus1)) { return 0.0f; } double squareModulus2 = vector2.GetSquareModulus(); if (squareModulus2 <= UtilityFP64.SQUARE_EPSYLON || double.IsNaN(squareModulus2)) { return 0.0f; } double multiplier = Math.Sqrt(1.0 / (squareModulus1 * squareModulus2)); double x = GetScalarProduct(vector1, vector2); double y = GetCrossProduct(vector1, vector2); return RadianFP64.ToUnits(Math.Atan2(y * multiplier, x * multiplier), unit); } public static double GetSquareDistance(in Vector2FP64 vector1, in Vector2FP64 vector2) { double dx1 = vector1.x1 - vector2.x1; double dx2 = vector1.x2 - vector2.x2; return dx1 * dx1 + dx2 * dx2; } public static double GetDistance(in Vector2FP64 vector1, in Vector2FP64 vector2) { return Math.Sqrt(GetSquareDistance(vector1, vector2)); } public static bool AreCloseEnough(in Vector2FP64 vector1, in Vector2FP64 vector2, double distanceLimit) { return 0.0 <= distanceLimit && GetSquareDistance(vector1, vector2) <= distanceLimit * distanceLimit; } public static bool AreClose(in Vector2FP64 vector1, in Vector2FP64 vector2) { double squareModulus1 = vector1.GetSquareModulus(); double squareModulus2 = vector2.GetSquareModulus(); double squareDistance = GetSquareDistance(vector1, vector2); if (squareModulus1 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP64.EPSYLON_EFFECTIVENESS_LIMIT) { return squareDistance <= UtilityFP64.SQUARE_EPSYLON; } return squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP64.SQUARE_EPSYLON * squareModulus2; } public static bool AreParallel(in Vector2FP64 vector1, in Vector2FP64 vector2) { double squareModulus1 = vector1.GetSquareModulus(); double squareModulus2 = vector2.GetSquareModulus(); if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON) { return true; } double crossProduct = GetCrossProduct(vector1, vector2); return crossProduct * crossProduct <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2; } public static bool AreOrthogonal(in Vector2FP64 vector1, in Vector2FP64 vector2) { double squareModulus1 = vector1.GetSquareModulus(); double squareModulus2 = vector2.GetSquareModulus(); if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON) { return true; } double scalarProduct = GetScalarProduct(vector1, vector2); return scalarProduct * scalarProduct <= UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2; } public static Attitude GetAttitude(in Vector2FP64 vector1, in Vector2FP64 vector2) { double squareModulus1 = vector1.GetSquareModulus(); double squareModulus2 = vector2.GetSquareModulus(); if (squareModulus1 <= UtilityFP64.SQUARE_EPSYLON || squareModulus2 <= UtilityFP64.SQUARE_EPSYLON) { return Attitude.ZERO; } double squareLimit = UtilityFP64.SQUARE_EPSYLON * squareModulus1 * squareModulus2; double scalarProduct = GetScalarProduct(vector1, vector2); if (scalarProduct * scalarProduct <= squareLimit) { return Attitude.ORTHOGONAL; } double crossProduct = GetCrossProduct(vector1, vector2); if (crossProduct * crossProduct > squareLimit) { return Attitude.ANY; } return scalarProduct > 0.0 ? Attitude.CO_DIRECTIONAL : Attitude.COUNTER_DIRECTIONAL; } } }