/* * Author: Andrey Pokidov * License: Apache-2.0 * Date: 1 Feb 2019 */ namespace BGC { public struct Vector2FP32 { public static readonly Vector2FP32 ZERO = new Vector2FP32(0.0f, 0.0f); public float x1 = 0.0f; public float x2 = 0.0f; public Vector2FP32(float x1, float x2) { this.x1 = x1; this.x2 = x2; } public Vector2FP32(in Vector2FP32 vector) { this.x1 = vector.x1; this.x2 = vector.x2; } public Vector2FP32(in Vector2FP64 vector) { this.x1 = (float)vector.x1; this.x2 = (float)vector.x2; } public readonly float GetSquareModulus() { return this.x1 * this.x1 + this.x2 * this.x2; } public readonly float GetModulus() { return MathF.Sqrt(this.GetSquareModulus()); } public readonly bool IsZero() { return this.GetSquareModulus() <= UtilityFP32.SQUARE_EPSYLON; } public readonly bool IsUnit() { return UtilityFP32.IsSqareUnit(this.GetSquareModulus()); } public void Reset() { this.x1 = 0.0f; this.x2 = 0.0f; } public void MakeOpposite() { this.x1 = -this.x1; this.x2 = -this.x2; } public readonly Vector2FP32 GetOpposite() { return new Vector2FP32(-this.x1, -this.x2); } public bool Normalize() { float squareModulus = this.GetSquareModulus(); if (UtilityFP32.IsSqareUnit(squareModulus)) { return true; } if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus)) { return false; } float multiplier = MathF.Sqrt(1.0f / squareModulus); this.x1 *= multiplier; this.x2 *= multiplier; return true; } public void SetValues(float x1, float x2) { this.x1 = x1; this.x2 = x2; } public void SetValues(in Vector2FP32 vector) { this.x1 = vector.x1; this.x2 = vector.x2; } public void SetValues(in Vector2FP64 vector) { this.x1 = (float)vector.x1; this.x2 = (float)vector.x2; } public readonly override string ToString() { return String.Format("Vector2FP32({0}, {1})", this.x1, this.x2); } public static void Swap(ref Vector2FP32 vector1, ref Vector2FP32 vector2) { float x1 = vector1.x1; float x2 = vector1.x2; vector1.x1 = vector2.x1; vector1.x2 = vector2.x2; vector2.x1 = x1; vector2.x2 = x2; } public static void Reset(out Vector2FP32 vector) { vector.x1 = 0.0f; vector.x2 = 0.0f; } public static void GetOpposite(in Vector2FP32 vector, out Vector2FP32 reverted) { reverted.x1 = -vector.x1; reverted.x2 = -vector.x2; } public static bool GetNormalized(in Vector2FP32 vector, out Vector2FP32 normalized) { float squareModulus = vector.GetSquareModulus(); if (UtilityFP32.IsSqareUnit(squareModulus)) { normalized.x1 = vector.x1; normalized.x2 = vector.x2; return true; } if (squareModulus <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus)) { normalized.x1 = 0.0f; normalized.x2 = 0.0f; return false; } float multiplier = MathF.Sqrt(1.0f / squareModulus); normalized.x1 = vector.x1 * multiplier; normalized.x2 = vector.x2 * multiplier; return true; } public static void Add(in Vector2FP32 vector1, in Vector2FP32 vector2, out Vector2FP32 sum) { sum.x1 = vector1.x1 + vector2.x1; sum.x2 = vector1.x2 + vector2.x2; } public static void AddScaled(in Vector2FP32 basicVector, in Vector2FP32 scalableVector, float scale, out Vector2FP32 sum) { sum.x1 = basicVector.x1 + scalableVector.x1 * scale; sum.x2 = basicVector.x2 + scalableVector.x2 * scale; } public static void Subtract(in Vector2FP32 minuend, in Vector2FP32 subtrahend, out Vector2FP32 difference) { difference.x1 = minuend.x1 - subtrahend.x1; difference.x2 = minuend.x2 - subtrahend.x2; } public static void Multiply(in Vector2FP32 multiplicand, float multiplier, out Vector2FP32 product) { product.x1 = multiplicand.x1 * multiplier; product.x2 = multiplicand.x2 * multiplier; } public static void Divide(in Vector2FP32 dividend, float divisor, out Vector2FP32 quotient) { Multiply(dividend, 1.0f / divisor, out quotient); } public static void GetMeanOfTwo(in Vector2FP32 vector1, in Vector2FP32 vector2, out Vector2FP32 mean) { mean.x1 = (vector1.x1 + vector2.x1) * 0.5f; mean.x2 = (vector1.x2 + vector2.x2) * 0.5f; } public static void GetMeanOfThree(in Vector2FP32 vector1, in Vector2FP32 vector2, in Vector2FP32 vector3, out Vector2FP32 mean) { mean.x1 = (vector1.x1 + vector2.x1 + vector3.x1) * UtilityFP32.ONE_THIRD; mean.x2 = (vector1.x2 + vector2.x2 + vector3.x2) * UtilityFP32.ONE_THIRD; } public static void Interpolate(in Vector2FP32 vector1, in Vector2FP32 vector2, float phase, out Vector2FP32 interpolation) { float counterphase = 1.0f - phase; interpolation.x1 = vector1.x1 * counterphase + vector2.x1 * phase; interpolation.x2 = vector1.x2 * counterphase + vector2.x2 * phase; } public static float GetScalarProduct(in Vector2FP32 vector1, in Vector2FP32 vector2) { return vector1.x1 * vector2.x1 + vector1.x2 * vector2.x2; } public static float GetCrossProduct(in Vector2FP32 vector1, in Vector2FP32 vector2) { return vector1.x1 * vector2.x2 - vector1.x2 * vector2.x1; } public static float GetAngle(in Vector2FP32 vector1, in Vector2FP32 vector2, AngleUnit unit) { float squareModulus1 = vector1.GetSquareModulus(); if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus1)) { return 0.0f; } float squareModulus2 = vector2.GetSquareModulus(); if (squareModulus2 <= UtilityFP32.SQUARE_EPSYLON || float.IsNaN(squareModulus2)) { return 0.0f; } float multiplier = MathF.Sqrt(1.0f / (squareModulus1 * squareModulus2)); float x = GetScalarProduct(vector1, vector2); float y = GetCrossProduct(vector1, vector2); return RadianFP32.ToUnits(MathF.Atan2(y * multiplier, x * multiplier), unit); } public static float GetSquareDistance(in Vector2FP32 vector1, in Vector2FP32 vector2) { float dx1 = vector1.x1 - vector2.x1; float dx2 = vector1.x2 - vector2.x2; return dx1 * dx1 + dx2 * dx2; } public static float GetDistance(in Vector2FP32 vector1, in Vector2FP32 vector2) { return MathF.Sqrt(GetSquareDistance(vector1, vector2)); } public static bool AreCloseEnough(in Vector2FP32 vector1, in Vector2FP32 vector2, float distanceLimit) { return 0.0f <= distanceLimit && GetSquareDistance(vector1, vector2) <= distanceLimit * distanceLimit; } public static bool AreClose(in Vector2FP32 vector1, in Vector2FP32 vector2) { float squareModulus1 = vector1.GetSquareModulus(); float squareModulus2 = vector2.GetSquareModulus(); float squareDistance = GetSquareDistance(vector1, vector2); if (squareModulus1 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT || squareModulus2 <= UtilityFP32.EPSYLON_EFFECTIVENESS_LIMIT) { return squareDistance <= UtilityFP32.SQUARE_EPSYLON; } return squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 && squareDistance <= UtilityFP32.SQUARE_EPSYLON * squareModulus2; } public static bool AreParallel(in Vector2FP32 vector1, in Vector2FP32 vector2) { float squareModulus1 = vector1.GetSquareModulus(); float squareModulus2 = vector2.GetSquareModulus(); if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON) { return true; } float crossProduct = GetCrossProduct(vector1, vector2); return crossProduct * crossProduct <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2; } public static bool AreOrthogonal(in Vector2FP32 vector1, in Vector2FP32 vector2) { float squareModulus1 = vector1.GetSquareModulus(); float squareModulus2 = vector2.GetSquareModulus(); if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON) { return true; } float scalarProduct = GetScalarProduct(vector1, vector2); return scalarProduct * scalarProduct <= UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2; } public static Attitude GetAttitude(in Vector2FP32 vector1, in Vector2FP32 vector2) { float squareModulus1 = vector1.GetSquareModulus(); float squareModulus2 = vector2.GetSquareModulus(); if (squareModulus1 <= UtilityFP32.SQUARE_EPSYLON || squareModulus2 <= UtilityFP32.SQUARE_EPSYLON) { return Attitude.ZERO; } float squareLimit = UtilityFP32.SQUARE_EPSYLON * squareModulus1 * squareModulus2; float scalarProduct = GetScalarProduct(vector1, vector2); if (scalarProduct * scalarProduct <= squareLimit) { return Attitude.ORTHOGONAL; } float crossProduct = GetCrossProduct(vector1, vector2); if (crossProduct * crossProduct > squareLimit) { return Attitude.ANY; } return scalarProduct > 0.0f ? Attitude.CO_DIRECTIONAL : Attitude.COUNTER_DIRECTIONAL; } } }