543 lines
17 KiB
C
543 lines
17 KiB
C
#ifndef _BGC_VECTOR2_H_
|
|
#define _BGC_VECTOR2_H_
|
|
|
|
#include "utilities.h"
|
|
#include "angle.h"
|
|
|
|
#include <math.h>
|
|
|
|
typedef struct
|
|
{
|
|
float x1, x2;
|
|
} BgcVector2FP32;
|
|
|
|
typedef struct
|
|
{
|
|
double x1, x2;
|
|
} BgcVector2FP64;
|
|
|
|
// =================== Reset ==================== //
|
|
|
|
inline void bgc_vector2_reset_fp32(BgcVector2FP32* vector)
|
|
{
|
|
vector->x1 = 0.0f;
|
|
vector->x2 = 0.0f;
|
|
}
|
|
|
|
inline void bgc_vector2_reset_fp64(BgcVector2FP64* vector)
|
|
{
|
|
vector->x1 = 0.0;
|
|
vector->x2 = 0.0;
|
|
}
|
|
|
|
// ==================== Set ===================== //
|
|
|
|
inline void bgc_vector2_set_values_fp32(const float x1, const float x2, BgcVector2FP32* to)
|
|
{
|
|
to->x1 = x1;
|
|
to->x2 = x2;
|
|
}
|
|
|
|
inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVector2FP64* to)
|
|
{
|
|
to->x1 = x1;
|
|
to->x2 = x2;
|
|
}
|
|
|
|
// ================== Modulus =================== //
|
|
|
|
inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector)
|
|
{
|
|
return vector->x1 * vector->x1 + vector->x2 * vector->x2;
|
|
}
|
|
|
|
inline double bgc_vector2_get_square_modulus_fp64(const BgcVector2FP64* vector)
|
|
{
|
|
return vector->x1 * vector->x1 + vector->x2 * vector->x2;
|
|
}
|
|
|
|
inline float bgc_vector2_get_modulus_fp32(const BgcVector2FP32* vector)
|
|
{
|
|
return sqrtf(bgc_vector2_get_square_modulus_fp32(vector));
|
|
}
|
|
|
|
inline double bgc_vector2_get_modulus_fp64(const BgcVector2FP64* vector)
|
|
{
|
|
return sqrt(bgc_vector2_get_square_modulus_fp64(vector));
|
|
}
|
|
|
|
// ================= Comparison ================= //
|
|
|
|
inline int bgc_vector2_is_zero_fp32(const BgcVector2FP32* vector)
|
|
{
|
|
return bgc_vector2_get_square_modulus_fp32(vector) <= BGC_SQUARE_EPSYLON_FP32;
|
|
}
|
|
|
|
inline int bgc_vector2_is_zero_fp64(const BgcVector2FP64* vector)
|
|
{
|
|
return bgc_vector2_get_square_modulus_fp64(vector) <= BGC_SQUARE_EPSYLON_FP64;
|
|
}
|
|
|
|
inline int bgc_vector2_is_unit_fp32(const BgcVector2FP32* vector)
|
|
{
|
|
return bgc_is_sqare_unit_fp32(bgc_vector2_get_square_modulus_fp32(vector));
|
|
}
|
|
|
|
inline int bgc_vector2_is_unit_fp64(const BgcVector2FP64* vector)
|
|
{
|
|
return bgc_is_sqare_unit_fp64(bgc_vector2_get_square_modulus_fp64(vector));
|
|
}
|
|
|
|
// ==================== Copy ==================== //
|
|
|
|
inline void bgc_vector2_copy_fp32(const BgcVector2FP32* from, BgcVector2FP32* to)
|
|
{
|
|
to->x1 = from->x1;
|
|
to->x2 = from->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_copy_fp64(const BgcVector2FP64* from, BgcVector2FP64* to)
|
|
{
|
|
to->x1 = from->x1;
|
|
to->x2 = from->x2;
|
|
}
|
|
|
|
// ==================== Swap ==================== //
|
|
|
|
inline void bgc_vector2_swap_fp32(BgcVector2FP32* vector1, BgcVector2FP32* vector2)
|
|
{
|
|
const float x1 = vector2->x1;
|
|
const float x2 = vector2->x2;
|
|
|
|
vector2->x1 = vector1->x1;
|
|
vector2->x2 = vector1->x2;
|
|
|
|
vector1->x1 = x1;
|
|
vector1->x2 = x2;
|
|
}
|
|
|
|
inline void bgc_vector2_swap_fp64(BgcVector2FP64* vector1, BgcVector2FP64* vector2)
|
|
{
|
|
const double x1 = vector2->x1;
|
|
const double x2 = vector2->x2;
|
|
|
|
vector2->x1 = vector1->x1;
|
|
vector2->x2 = vector1->x2;
|
|
|
|
vector1->x1 = x1;
|
|
vector1->x2 = x2;
|
|
}
|
|
|
|
// ================== Convert =================== //
|
|
|
|
inline void bgc_vector2_convert_fp64_to_fp32(const BgcVector2FP64* from, BgcVector2FP32* to)
|
|
{
|
|
to->x1 = (float)from->x1;
|
|
to->x2 = (float)from->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_convert_fp32_to_fp64(const BgcVector2FP32* from, BgcVector2FP64* to)
|
|
{
|
|
to->x1 = from->x1;
|
|
to->x2 = from->x2;
|
|
}
|
|
|
|
// ================== Reverse =================== //
|
|
|
|
inline void bgc_vector2_reverse_fp32(BgcVector2FP32* vector)
|
|
{
|
|
vector->x1 = -vector->x1;
|
|
vector->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_reverse_fp64(BgcVector2FP64* vector)
|
|
{
|
|
vector->x1 = -vector->x1;
|
|
vector->x2 = -vector->x2;
|
|
}
|
|
|
|
// ================= Normalize ================== //
|
|
|
|
inline int bgc_vector2_normalize_fp32(BgcVector2FP32* vector)
|
|
{
|
|
const float square_modulus = bgc_vector2_get_square_modulus_fp32(vector);
|
|
|
|
if (bgc_is_sqare_unit_fp32(square_modulus)) {
|
|
return 1;
|
|
}
|
|
|
|
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
|
|
vector->x1 = 0.0f;
|
|
vector->x2 = 0.0f;
|
|
return 0;
|
|
}
|
|
|
|
const float multiplicand = sqrtf(1.0f / square_modulus);
|
|
|
|
vector->x1 *= multiplicand;
|
|
vector->x2 *= multiplicand;
|
|
|
|
return 1;
|
|
}
|
|
|
|
inline int bgc_vector2_normalize_fp64(BgcVector2FP64* vector)
|
|
{
|
|
const double square_modulus = bgc_vector2_get_square_modulus_fp64(vector);
|
|
|
|
if (bgc_is_sqare_unit_fp64(square_modulus)) {
|
|
return 1;
|
|
}
|
|
|
|
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
|
|
vector->x1 = 0.0;
|
|
vector->x2 = 0.0;
|
|
return 0;
|
|
}
|
|
|
|
const double multiplicand = sqrt(1.0 / square_modulus);
|
|
|
|
vector->x1 *= multiplicand;
|
|
vector->x2 *= multiplicand;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// ============= Complex Conjugate ============== //
|
|
|
|
inline void bgc_vector2_complex_conjugate_fp32(BgcVector2FP32* vector)
|
|
{
|
|
vector->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_complex_conjugate_fp64(BgcVector2FP64* vector)
|
|
{
|
|
vector->x2 = -vector->x2;
|
|
}
|
|
|
|
// ================ Get Reverse ================= //
|
|
|
|
inline void bgc_vector2_get_reverse_fp32(const BgcVector2FP32* vector, BgcVector2FP32* reverse)
|
|
{
|
|
reverse->x1 = -vector->x1;
|
|
reverse->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_get_reverse_fp64(const BgcVector2FP64* vector, BgcVector2FP64* reverse)
|
|
{
|
|
reverse->x1 = -vector->x1;
|
|
reverse->x2 = -vector->x2;
|
|
}
|
|
|
|
// =============== Get Normalized =============== //
|
|
|
|
inline int bgc_vector2_get_normalized_fp32(const BgcVector2FP32* vector, BgcVector2FP32* normalized)
|
|
{
|
|
bgc_vector2_copy_fp32(vector, normalized);
|
|
return bgc_vector2_normalize_fp32(normalized);
|
|
}
|
|
|
|
inline int bgc_vector2_get_normalized_fp64(const BgcVector2FP64* vector, BgcVector2FP64* normalized)
|
|
{
|
|
bgc_vector2_copy_fp64(vector, normalized);
|
|
return bgc_vector2_normalize_fp64(normalized);
|
|
}
|
|
|
|
// =========== Get Complex Conjugate ============ //
|
|
|
|
inline void bgc_vector2_get_complex_conjugate_fp32(const BgcVector2FP32* vector, BgcVector2FP32* conjugate)
|
|
{
|
|
conjugate->x1 = vector->x1;
|
|
conjugate->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_get_complex_conjugate_fp64(const BgcVector2FP64* vector, BgcVector2FP64* conjugate)
|
|
{
|
|
conjugate->x1 = vector->x1;
|
|
conjugate->x2 = -vector->x2;
|
|
}
|
|
|
|
// ==================== Add ===================== //
|
|
|
|
inline void bgc_vector2_add_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* sum)
|
|
{
|
|
sum->x1 = vector1->x1 + vector2->x1;
|
|
sum->x2 = vector1->x2 + vector2->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_add_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* sum)
|
|
{
|
|
sum->x1 = vector1->x1 + vector2->x1;
|
|
sum->x2 = vector1->x2 + vector2->x2;
|
|
}
|
|
|
|
// ================= Add scaled ================= //
|
|
|
|
inline void bgc_vector2_add_scaled_fp32(const BgcVector2FP32* basic_vector, const BgcVector2FP32* scalable_vector, const float scale, BgcVector2FP32* sum)
|
|
{
|
|
sum->x1 = basic_vector->x1 + scalable_vector->x1 * scale;
|
|
sum->x2 = basic_vector->x2 + scalable_vector->x2 * scale;
|
|
}
|
|
|
|
inline void bgc_vector2_add_scaled_fp64(const BgcVector2FP64* basic_vector, const BgcVector2FP64* scalable_vector, const double scale, BgcVector2FP64* sum)
|
|
{
|
|
sum->x1 = basic_vector->x1 + scalable_vector->x1 * scale;
|
|
sum->x2 = basic_vector->x2 + scalable_vector->x2 * scale;
|
|
}
|
|
|
|
// ================== Subtract ================== //
|
|
|
|
inline void bgc_vector2_subtract_fp32(const BgcVector2FP32* minuend, const BgcVector2FP32* subtrahend, BgcVector2FP32* difference)
|
|
{
|
|
difference->x1 = minuend->x1 - subtrahend->x1;
|
|
difference->x2 = minuend->x2 - subtrahend->x2;
|
|
}
|
|
|
|
inline void bgc_vector2_subtract_fp64(const BgcVector2FP64* minuend, const BgcVector2FP64* subtrahend, BgcVector2FP64* difference)
|
|
{
|
|
difference->x1 = minuend->x1 - subtrahend->x1;
|
|
difference->x2 = minuend->x2 - subtrahend->x2;
|
|
}
|
|
|
|
// ============== Subtract scaled =============== //
|
|
|
|
inline void bgc_vector2_subtract_scaled_fp32(const BgcVector2FP32* basic_vector, const BgcVector2FP32* scalable_vector, const float scale, BgcVector2FP32* difference)
|
|
{
|
|
difference->x1 = basic_vector->x1 - scalable_vector->x1 * scale;
|
|
difference->x2 = basic_vector->x2 - scalable_vector->x2 * scale;
|
|
}
|
|
|
|
inline void bgc_vector2_subtract_scaled_fp64(const BgcVector2FP64* basic_vector, const BgcVector2FP64* scalable_vector, const double scale, BgcVector2FP64* difference)
|
|
{
|
|
difference->x1 = basic_vector->x1 - scalable_vector->x1 * scale;
|
|
difference->x2 = basic_vector->x2 - scalable_vector->x2 * scale;
|
|
}
|
|
|
|
// ================== Multiply ================== //
|
|
|
|
inline void bgc_vector2_multiply_fp32(const BgcVector2FP32* multiplicand, const float multiplier, BgcVector2FP32* product)
|
|
{
|
|
product->x1 = multiplicand->x1 * multiplier;
|
|
product->x2 = multiplicand->x2 * multiplier;
|
|
}
|
|
|
|
inline void bgc_vector2_multiply_fp64(const BgcVector2FP64* multiplicand, const double multiplier, BgcVector2FP64* product)
|
|
{
|
|
product->x1 = multiplicand->x1 * multiplier;
|
|
product->x2 = multiplicand->x2 * multiplier;
|
|
}
|
|
|
|
// =================== Divide =================== //
|
|
|
|
inline void bgc_vector2_divide_fp32(const BgcVector2FP32* dividend, const float divisor, BgcVector2FP32* quotient)
|
|
{
|
|
bgc_vector2_multiply_fp32(dividend, 1.0f / divisor, quotient);
|
|
}
|
|
|
|
inline void bgc_vector2_divide_fp64(const BgcVector2FP64* dividend, const double divisor, BgcVector2FP64* quotient)
|
|
{
|
|
bgc_vector2_multiply_fp64(dividend, 1.0 / divisor, quotient);
|
|
}
|
|
|
|
// ================== Average2 ================== //
|
|
|
|
inline void bgc_vector2_get_mean_of_two_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* mean)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1) * 0.5f;
|
|
mean->x2 = (vector1->x2 + vector2->x2) * 0.5f;
|
|
}
|
|
|
|
inline void bgc_vector2_get_mean_of_two_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* mean)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1) * 0.5;
|
|
mean->x2 = (vector1->x2 + vector2->x2) * 0.5;
|
|
}
|
|
|
|
// ================== Average3 ================== //
|
|
|
|
inline void bgc_vector2_get_mean_of_three_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcVector2FP32* vector3, BgcVector2FP32* mean)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_ONE_THIRD_FP32;
|
|
mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_ONE_THIRD_FP32;
|
|
}
|
|
|
|
inline void bgc_vector2_get_mean_of_three_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcVector2FP64* vector3, BgcVector2FP64* mean)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_ONE_THIRD_FP64;
|
|
mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_ONE_THIRD_FP64;
|
|
}
|
|
|
|
// ================== Minimal =================== //
|
|
|
|
inline void bgc_vector2_minimize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* minimal)
|
|
{
|
|
if (vector->x1 < minimal->x1) {
|
|
minimal->x1 = vector->x1;
|
|
}
|
|
|
|
if (vector->x2 < minimal->x2) {
|
|
minimal->x2 = vector->x2;
|
|
}
|
|
}
|
|
|
|
inline void bgc_vector2_minimize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* minimal)
|
|
{
|
|
if (vector->x1 < minimal->x1) {
|
|
minimal->x1 = vector->x1;
|
|
}
|
|
|
|
if (vector->x2 < minimal->x2) {
|
|
minimal->x2 = vector->x2;
|
|
}
|
|
}
|
|
|
|
// ================== Maximal =================== //
|
|
|
|
inline void bgc_vector2_maximize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* maximal)
|
|
{
|
|
if (vector->x1 > maximal->x1) {
|
|
maximal->x1 = vector->x1;
|
|
}
|
|
|
|
if (vector->x2 > maximal->x2) {
|
|
maximal->x2 = vector->x2;
|
|
}
|
|
}
|
|
|
|
inline void bgc_vector2_maximize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* maximal)
|
|
{
|
|
if (vector->x1 > maximal->x1) {
|
|
maximal->x1 = vector->x1;
|
|
}
|
|
|
|
if (vector->x2 > maximal->x2) {
|
|
maximal->x2 = vector->x2;
|
|
}
|
|
}
|
|
|
|
// =============== Scalar Product =============== //
|
|
|
|
inline float bgc_vector2_get_scalar_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2;
|
|
}
|
|
|
|
inline double bgc_vector2_get_scalar_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2;
|
|
}
|
|
|
|
// =============== Cross Product ================ //
|
|
|
|
inline float bgc_vector2_get_cross_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1;
|
|
}
|
|
|
|
inline double bgc_vector2_get_cross_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1;
|
|
}
|
|
|
|
// ============== Complex Product =============== //
|
|
|
|
inline void bgc_vector2_get_complex_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* result)
|
|
{
|
|
const float x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2;
|
|
const float x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1;
|
|
|
|
result->x1 = x1;
|
|
result->x2 = x2;
|
|
}
|
|
|
|
inline void bgc_vector2_get_complex_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* result)
|
|
{
|
|
const double x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2;
|
|
const double x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1;
|
|
|
|
result->x1 = x1;
|
|
result->x2 = x2;
|
|
}
|
|
|
|
// =============== Complex Power ================ //
|
|
|
|
void bgc_vector2_get_complex_power_fp32(const BgcVector2FP32* base, const BgcVector2FP32* power, BgcVector2FP32* result);
|
|
|
|
void bgc_vector2_get_complex_power_fp64(const BgcVector2FP64* base, const BgcVector2FP64* power, BgcVector2FP64* result);
|
|
|
|
// =================== Angle ==================== //
|
|
|
|
float bgc_vector2_get_angle_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcAngleUnitEnum unit);
|
|
|
|
double bgc_vector2_get_angle_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcAngleUnitEnum unit);
|
|
|
|
// =============== Square Distance ============== //
|
|
|
|
inline float bgc_vector2_get_square_distance_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
|
|
{
|
|
const float dx1 = (vector1->x1 - vector2->x1);
|
|
const float dx2 = (vector1->x2 - vector2->x2);
|
|
|
|
return dx1 * dx1 + dx2 * dx2;
|
|
}
|
|
|
|
inline double bgc_vector2_get_square_distance_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
|
|
{
|
|
const double dx1 = (vector1->x1 - vector2->x1);
|
|
const double dx2 = (vector1->x2 - vector2->x2);
|
|
|
|
return dx1 * dx1 + dx2 * dx2;
|
|
}
|
|
|
|
// ================== Distance ================== //
|
|
|
|
inline float bgc_vector2_get_distance_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
|
|
{
|
|
return sqrtf(bgc_vector2_get_square_distance_fp32(vector1, vector2));
|
|
}
|
|
|
|
inline double bgc_vector2_get_distance_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
|
|
{
|
|
return sqrt(bgc_vector2_get_square_distance_fp64(vector1, vector2));
|
|
}
|
|
|
|
// ============== Are Close Enough ============== //
|
|
|
|
inline int bgc_vector2_are_close_enough_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float distance)
|
|
{
|
|
return bgc_vector2_get_square_distance_fp32(vector1, vector2) <= distance * distance;
|
|
}
|
|
|
|
inline int bgc_vector2_are_close_enough_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double distance)
|
|
{
|
|
return bgc_vector2_get_square_distance_fp64(vector1, vector2) <= distance * distance;
|
|
}
|
|
|
|
// ================== Are Close ================= //
|
|
|
|
inline int bgc_vector2_are_close_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2)
|
|
{
|
|
const float square_modulus1 = bgc_vector2_get_square_modulus_fp32(vector1);
|
|
const float square_modulus2 = bgc_vector2_get_square_modulus_fp32(vector2);
|
|
const float square_distance = bgc_vector2_get_square_distance_fp32(vector1, vector2);
|
|
|
|
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32) {
|
|
return square_distance <= BGC_SQUARE_EPSYLON_FP32;
|
|
}
|
|
|
|
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
|
|
}
|
|
|
|
inline int bgc_vector2_are_close_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2)
|
|
{
|
|
const double square_modulus1 = bgc_vector2_get_square_modulus_fp64(vector1);
|
|
const double square_modulus2 = bgc_vector2_get_square_modulus_fp64(vector2);
|
|
const double square_distance = bgc_vector2_get_square_distance_fp64(vector1, vector2);
|
|
|
|
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64) {
|
|
return square_distance <= BGC_SQUARE_EPSYLON_FP64;
|
|
}
|
|
|
|
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
|
|
}
|
|
|
|
#endif
|