192 lines
10 KiB
C
192 lines
10 KiB
C
#include "vector2.h"
|
|
|
|
extern inline void bgc_vector2_reset_fp32(BgcVector2FP32* vector);
|
|
extern inline void bgc_vector2_reset_fp64(BgcVector2FP64* vector);
|
|
|
|
extern inline void bgc_vector2_set_values_fp32(const float x1, const float x2, BgcVector2FP32* to);
|
|
extern inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVector2FP64* to);
|
|
|
|
extern inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector);
|
|
extern inline double bgc_vector2_get_square_modulus_fp64(const BgcVector2FP64* vector);
|
|
|
|
extern inline float bgc_vector2_get_modulus_fp32(const BgcVector2FP32* vector);
|
|
extern inline double bgc_vector2_get_modulus_fp64(const BgcVector2FP64* vector);
|
|
|
|
extern inline int bgc_vector2_is_zero_fp32(const BgcVector2FP32* vector);
|
|
extern inline int bgc_vector2_is_zero_fp64(const BgcVector2FP64* vector);
|
|
|
|
extern inline int bgc_vector2_is_unit_fp32(const BgcVector2FP32* vector);
|
|
extern inline int bgc_vector2_is_unit_fp64(const BgcVector2FP64* vector);
|
|
|
|
extern inline void bgc_vector2_copy_fp32(const BgcVector2FP32* from, BgcVector2FP32* to);
|
|
extern inline void bgc_vector2_copy_fp64(const BgcVector2FP64* from, BgcVector2FP64* to);
|
|
|
|
extern inline void bgc_vector2_swap_fp32(BgcVector2FP32* vector1, BgcVector2FP32* vector2);
|
|
extern inline void bgc_vector2_swap_fp64(BgcVector2FP64* vector1, BgcVector2FP64* vector2);
|
|
|
|
extern inline void bgc_vector2_convert_fp64_to_fp32(const BgcVector2FP64* from, BgcVector2FP32* to);
|
|
extern inline void bgc_vector2_convert_fp32_to_fp64(const BgcVector2FP32* from, BgcVector2FP64* to);
|
|
|
|
extern inline void bgc_vector2_reverse_fp32(BgcVector2FP32* vector);
|
|
extern inline void bgc_vector2_reverse_fp64(BgcVector2FP64* vector);
|
|
|
|
extern inline int bgc_vector2_normalize_fp32(BgcVector2FP32* vector);
|
|
extern inline int bgc_vector2_normalize_fp64(BgcVector2FP64* vector);
|
|
|
|
extern inline void bgc_vector2_get_reverse_fp32(const BgcVector2FP32* vector, BgcVector2FP32* reverse);
|
|
extern inline void bgc_vector2_get_reverse_fp64(const BgcVector2FP64* vector, BgcVector2FP64* reverse);
|
|
|
|
extern inline int bgc_vector2_get_normalized_fp32(const BgcVector2FP32* vector, BgcVector2FP32* result);
|
|
extern inline int bgc_vector2_get_normalized_fp64(const BgcVector2FP64* vector, BgcVector2FP64* result);
|
|
|
|
extern inline void bgc_vector2_get_complex_conjugate_fp32(const BgcVector2FP32* vector, BgcVector2FP32* conjugate);
|
|
extern inline void bgc_vector2_get_complex_conjugate_fp64(const BgcVector2FP64* vector, BgcVector2FP64* conjugate);
|
|
|
|
extern inline void bgc_vector2_add_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* sum);
|
|
extern inline void bgc_vector2_add_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* sum);
|
|
|
|
extern inline void bgc_vector2_add_scaled_fp32(const BgcVector2FP32* basic_vector, const BgcVector2FP32* scalable_vector, const float scale, BgcVector2FP32* sum);
|
|
extern inline void bgc_vector2_add_scaled_fp64(const BgcVector2FP64* basic_vector, const BgcVector2FP64* scalable_vector, const double scale, BgcVector2FP64* sum);
|
|
|
|
extern inline void bgc_vector2_subtract_fp32(const BgcVector2FP32* minuend, const BgcVector2FP32* subtrahend, BgcVector2FP32* difference);
|
|
extern inline void bgc_vector2_subtract_fp64(const BgcVector2FP64* minuend, const BgcVector2FP64* subtrahend, BgcVector2FP64* difference);
|
|
|
|
extern inline void bgc_vector2_subtract_scaled_fp32(const BgcVector2FP32* basic_vector, const BgcVector2FP32* scalable_vector, const float scale, BgcVector2FP32* difference);
|
|
extern inline void bgc_vector2_subtract_scaled_fp64(const BgcVector2FP64* basic_vector, const BgcVector2FP64* scalable_vector, const double scale, BgcVector2FP64* difference);
|
|
|
|
extern inline void bgc_vector2_multiply_fp32(const BgcVector2FP32* multiplicand, const float multiplier, BgcVector2FP32* product);
|
|
extern inline void bgc_vector2_multiply_fp64(const BgcVector2FP64* multiplicand, const double multiplier, BgcVector2FP64* product);
|
|
|
|
extern inline void bgc_vector2_divide_fp32(const BgcVector2FP32* dividend, const float divisor, BgcVector2FP32* quotient);
|
|
extern inline void bgc_vector2_divide_fp64(const BgcVector2FP64* dividend, const double divisor, BgcVector2FP64* quotient);
|
|
|
|
extern inline void bgc_vector2_get_mean_of_two_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* mean);
|
|
extern inline void bgc_vector2_get_mean_of_two_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* mean);
|
|
|
|
extern inline void bgc_vector2_get_mean_of_three_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcVector2FP32* vector3, BgcVector2FP32* mean);
|
|
extern inline void bgc_vector2_get_mean_of_three_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcVector2FP64* vector3, BgcVector2FP64* mean);
|
|
|
|
extern inline void bgc_vector2_minimize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* minimal);
|
|
extern inline void bgc_vector2_minimize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* minimal);
|
|
|
|
extern inline void bgc_vector2_maximize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* maximal);
|
|
extern inline void bgc_vector2_maximize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* maximal);
|
|
|
|
extern inline float bgc_vector2_get_scalar_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
|
|
extern inline double bgc_vector2_get_scalar_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
|
|
|
|
extern inline float bgc_vector2_get_cross_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
|
|
extern inline double bgc_vector2_get_cross_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
|
|
|
|
extern inline void bgc_vector2_get_complex_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* product);
|
|
extern inline void bgc_vector2_get_complex_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* product);
|
|
|
|
extern inline float bgc_vector2_get_square_distance_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
|
|
extern inline double bgc_vector2_get_square_distance_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
|
|
|
|
extern inline float bgc_vector2_get_distance_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
|
|
extern inline double bgc_vector2_get_distance_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
|
|
|
|
extern inline int bgc_vector2_are_close_enough_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float distance);
|
|
extern inline int bgc_vector2_are_close_enough_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double distance);
|
|
|
|
extern inline int bgc_vector2_are_close_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
|
|
extern inline int bgc_vector2_are_close_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
|
|
|
|
// =============== Complex Power ================ //
|
|
|
|
void bgc_vector2_get_complex_power_fp32(const BgcVector2FP32* base, const BgcVector2FP32* power, BgcVector2FP32* result)
|
|
{
|
|
const float base_square_modulus = bgc_vector2_get_square_modulus_fp32(base);
|
|
|
|
if (base_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
|
|
result->x1 = 0.0f;
|
|
result->x2 = 0.0f;
|
|
return;
|
|
}
|
|
|
|
const float log_modulus = logf(base_square_modulus) * 0.5f;
|
|
const float angle = atan2f(base->x2, base->x1);
|
|
|
|
const float result_modulus = expf(power->x1 * log_modulus - power->x2 * angle);
|
|
const float result_angle = power->x1 * angle + power->x2 * log_modulus;
|
|
|
|
result->x1 = result_modulus * cosf(result_angle);
|
|
result->x2 = result_modulus * sinf(result_angle);
|
|
}
|
|
|
|
void bgc_vector2_get_complex_power_fp64(const BgcVector2FP64* base, const BgcVector2FP64* power, BgcVector2FP64* result)
|
|
{
|
|
const double base_square_modulus = bgc_vector2_get_square_modulus_fp64(base);
|
|
|
|
if (base_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
|
|
result->x1 = 0.0;
|
|
result->x2 = 0.0;
|
|
return;
|
|
}
|
|
|
|
const double log_modulus = log(base_square_modulus) * 0.5;
|
|
const double angle = atan2(base->x2, base->x1);
|
|
|
|
const double result_modulus = exp(power->x1 * log_modulus - power->x2 * angle);
|
|
const double result_angle = power->x1 * angle + power->x2 * log_modulus;
|
|
|
|
result->x1 = result_modulus * cos(result_angle);
|
|
result->x2 = result_modulus * sin(result_angle);
|
|
}
|
|
|
|
// =================== Angle ==================== //
|
|
|
|
float bgc_vector2_get_angle_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcAngleUnitEnum unit)
|
|
{
|
|
const float square_modulus1 = bgc_vector2_get_square_modulus_fp32(vector1);
|
|
|
|
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const float square_modulus2 = bgc_vector2_get_square_modulus_fp32(vector2);
|
|
|
|
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const float cosine = bgc_vector2_get_scalar_product_fp32(vector1, vector2) / sqrtf(square_modulus1 * square_modulus2);
|
|
|
|
if (cosine >= 1.0f - BGC_EPSYLON_FP32) {
|
|
return 0.0f;
|
|
}
|
|
|
|
if (cosine <= -1.0f + BGC_EPSYLON_FP32) {
|
|
return bgc_angle_get_half_circle_fp32(unit);
|
|
}
|
|
|
|
return bgc_radians_to_units_fp32(acosf(cosine), unit);
|
|
}
|
|
|
|
double bgc_vector2_get_angle_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcAngleUnitEnum unit)
|
|
{
|
|
const double square_modulus1 = bgc_vector2_get_square_modulus_fp64(vector1);
|
|
|
|
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64) {
|
|
return 0.0;
|
|
}
|
|
|
|
const double square_modulus2 = bgc_vector2_get_square_modulus_fp64(vector2);
|
|
|
|
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64) {
|
|
return 0.0;
|
|
}
|
|
|
|
const double cosine = bgc_vector2_get_scalar_product_fp64(vector1, vector2) / sqrt(square_modulus1 * square_modulus2);
|
|
|
|
if (cosine >= 1.0 - BGC_EPSYLON_FP64) {
|
|
return 0.0;
|
|
}
|
|
|
|
if (cosine <= -1.0 + BGC_EPSYLON_FP64) {
|
|
return bgc_angle_get_half_circle_fp64(unit);
|
|
}
|
|
|
|
return bgc_radians_to_units_fp64(acos(cosine), unit);
|
|
}
|