124 lines
7.8 KiB
C
124 lines
7.8 KiB
C
#include "./complex.h"
|
|
|
|
extern inline void bgc_complex_reset_fp32(BgcComplexFP32* complex);
|
|
extern inline void bgc_complex_reset_fp64(BgcComplexFP64* complex);
|
|
|
|
extern inline void bgc_complex_set_values_fp32(const float real, const float imaginary, BgcComplexFP32* destination);
|
|
extern inline void bgc_complex_set_values_fp64(const double real, const double imaginary, BgcComplexFP64* destination);
|
|
|
|
extern inline float bgc_complex_get_square_modulus_fp32(const BgcComplexFP32* number);
|
|
extern inline double bgc_complex_get_square_modulus_fp64(const BgcComplexFP64* number);
|
|
|
|
extern inline float bgc_complex_get_modulus_fp32(const BgcComplexFP32* number);
|
|
extern inline double bgc_complex_get_modulus_fp64(const BgcComplexFP64* number);
|
|
|
|
extern inline int bgc_complex_is_zero_fp32(const BgcComplexFP32* number);
|
|
extern inline int bgc_complex_is_zero_fp64(const BgcComplexFP64* number);
|
|
|
|
extern inline int bgc_complex_is_unit_fp32(const BgcComplexFP32* number);
|
|
extern inline int bgc_complex_is_unit_fp64(const BgcComplexFP64* number);
|
|
|
|
extern inline void bgc_complex_copy_fp32(const BgcComplexFP32* source, BgcComplexFP32* destination);
|
|
extern inline void bgc_complex_copy_fp64(const BgcComplexFP64* source, BgcComplexFP64* destination);
|
|
|
|
extern inline void bgc_complex_swap_fp32(BgcComplexFP32* number1, BgcComplexFP32* number2);
|
|
extern inline void bgc_complex_swap_fp64(BgcComplexFP64* number1, BgcComplexFP64* number2);
|
|
|
|
extern inline void bgc_complex_convert_fp64_to_fp32(const BgcComplexFP64* source, BgcComplexFP32* destination);
|
|
extern inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcComplexFP64* destination);
|
|
|
|
extern inline void bgc_complex_reverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* reverse);
|
|
extern inline void bgc_complex_reverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* reverse);
|
|
|
|
extern inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized);
|
|
extern inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized);
|
|
|
|
extern inline void bgc_complex_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate);
|
|
extern inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate);
|
|
|
|
extern inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverted);
|
|
extern inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverted);
|
|
|
|
extern inline void bgc_complex_get_product_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result);
|
|
extern inline void bgc_complex_get_product_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result);
|
|
|
|
extern inline int bgc_complex_get_ratio_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient);
|
|
extern inline int bgc_complex_get_ratio_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient);
|
|
|
|
extern inline void bgc_complex_add_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* sum);
|
|
extern inline void bgc_complex_add_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* sum);
|
|
|
|
extern inline void bgc_complex_add_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* sum);
|
|
extern inline void bgc_complex_add_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* sum);
|
|
|
|
extern inline void bgc_complex_subtract_fp32(const BgcComplexFP32* minuend, const BgcComplexFP32* subtrahend, BgcComplexFP32* difference);
|
|
extern inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcComplexFP64* subtrahend, BgcComplexFP64* difference);
|
|
|
|
extern inline void bgc_complex_subtract_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* difference);
|
|
extern inline void bgc_complex_subtract_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* difference);
|
|
|
|
extern inline void bgc_complex_multiply_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product);
|
|
extern inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product);
|
|
|
|
extern inline void bgc_complex_divide_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient);
|
|
extern inline void bgc_complex_divide_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient);
|
|
|
|
extern inline void bgc_complex_get_mean_of_two_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* mean);
|
|
extern inline void bgc_complex_get_mean_of_two_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* mean);
|
|
|
|
extern inline void bgc_complex_get_mean_of_three_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const BgcComplexFP32* number3, BgcComplexFP32* mean);
|
|
extern inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const BgcComplexFP64* number3, BgcComplexFP64* mean);
|
|
|
|
extern inline void bgc_complex_get_linear_interpolation_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation);
|
|
extern inline void bgc_complex_get_linear_interpolation_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation);
|
|
|
|
extern inline void bgc_complex_minimize_fp32(const BgcComplexFP32* number, BgcComplexFP32* minimal);
|
|
extern inline void bgc_complex_minimize_fp64(const BgcComplexFP64* number, BgcComplexFP64* minimal);
|
|
|
|
extern inline void bgc_complex_maximize_fp32(const BgcComplexFP32* number, BgcComplexFP32* maximal);
|
|
extern inline void bgc_complex_maximize_fp64(const BgcComplexFP64* number, BgcComplexFP64* maximal);
|
|
|
|
extern inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2);
|
|
extern inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2);
|
|
|
|
// =============== Get Exponation =============== //
|
|
|
|
void bgc_complex_get_exponation_fp32(const BgcComplexFP32* base, const float real_exponent, const float imaginary_exponent, BgcComplexFP32* power)
|
|
{
|
|
const float square_modulus = bgc_complex_get_square_modulus_fp32(base);
|
|
|
|
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
|
|
power->real = 0.0f;
|
|
power->imaginary = 0.0f;
|
|
return;
|
|
}
|
|
|
|
const float log_modulus = logf(square_modulus) * 0.5f;
|
|
const float angle = atan2f(base->imaginary, base->real);
|
|
|
|
const float power_modulus = expf(real_exponent * log_modulus - imaginary_exponent * angle);
|
|
const float power_angle = real_exponent * angle + imaginary_exponent * log_modulus;
|
|
|
|
power->real = power_modulus * cosf(power_angle);
|
|
power->imaginary = power_modulus * sinf(power_angle);
|
|
}
|
|
|
|
void bgc_complex_get_exponation_fp64(const BgcComplexFP64* base, const double real_exponent, const double imaginary_exponent, BgcComplexFP64* power)
|
|
{
|
|
const double square_modulus = bgc_complex_get_square_modulus_fp64(base);
|
|
|
|
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
|
|
power->real = 0.0;
|
|
power->imaginary = 0.0;
|
|
return;
|
|
}
|
|
|
|
const double log_modulus = log(square_modulus) * 0.5;
|
|
const double angle = atan2(base->imaginary, base->real);
|
|
|
|
const double power_modulus = exp(real_exponent * log_modulus - imaginary_exponent * angle);
|
|
const double power_angle = real_exponent * angle + imaginary_exponent * log_modulus;
|
|
|
|
power->real = power_modulus * cos(power_angle);
|
|
power->imaginary = power_modulus * sin(power_angle);
|
|
}
|