599 lines
19 KiB
C
599 lines
19 KiB
C
#ifndef _BGC_VECTOR2_H_
|
|
#define _BGC_VECTOR2_H_
|
|
|
|
#include "utilities.h"
|
|
#include "angle.h"
|
|
|
|
#include <math.h>
|
|
|
|
typedef struct
|
|
{
|
|
float x1, x2;
|
|
} BGC_FP32_Vector2;
|
|
|
|
typedef struct
|
|
{
|
|
double x1, x2;
|
|
} BGC_FP64_Vector2;
|
|
|
|
// =================== Reset ==================== //
|
|
|
|
inline void bgc_fp32_vector2_reset(BGC_FP32_Vector2* vector)
|
|
{
|
|
vector->x1 = 0.0f;
|
|
vector->x2 = 0.0f;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_reset(BGC_FP64_Vector2* vector)
|
|
{
|
|
vector->x1 = 0.0;
|
|
vector->x2 = 0.0;
|
|
}
|
|
|
|
// ==================== Set ===================== //
|
|
|
|
inline void bgc_fp32_vector2_make(BGC_FP32_Vector2* destination, const float x1, const float x2)
|
|
{
|
|
destination->x1 = x1;
|
|
destination->x2 = x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_make(BGC_FP64_Vector2* destination, const double x1, const double x2)
|
|
{
|
|
destination->x1 = x1;
|
|
destination->x2 = x2;
|
|
}
|
|
|
|
// ================== Modulus =================== //
|
|
|
|
inline float bgc_fp32_vector2_get_square_modulus(const BGC_FP32_Vector2* vector)
|
|
{
|
|
return vector->x1 * vector->x1 + vector->x2 * vector->x2;
|
|
}
|
|
|
|
inline double bgc_fp64_vector2_get_square_modulus(const BGC_FP64_Vector2* vector)
|
|
{
|
|
return vector->x1 * vector->x1 + vector->x2 * vector->x2;
|
|
}
|
|
|
|
inline float bgc_fp32_vector2_get_modulus(const BGC_FP32_Vector2* vector)
|
|
{
|
|
return sqrtf(bgc_fp32_vector2_get_square_modulus(vector));
|
|
}
|
|
|
|
inline double bgc_fp64_vector2_get_modulus(const BGC_FP64_Vector2* vector)
|
|
{
|
|
return sqrt(bgc_fp64_vector2_get_square_modulus(vector));
|
|
}
|
|
|
|
// ================= Comparison ================= //
|
|
|
|
inline int bgc_fp32_vector2_is_zero(const BGC_FP32_Vector2* vector)
|
|
{
|
|
return bgc_fp32_vector2_get_square_modulus(vector) <= BGC_FP32_SQUARE_EPSILON;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_is_zero(const BGC_FP64_Vector2* vector)
|
|
{
|
|
return bgc_fp64_vector2_get_square_modulus(vector) <= BGC_FP64_SQUARE_EPSILON;
|
|
}
|
|
|
|
inline int bgc_fp32_vector2_is_unit(const BGC_FP32_Vector2* vector)
|
|
{
|
|
return bgc_fp32_is_square_unit(bgc_fp32_vector2_get_square_modulus(vector));
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_is_unit(const BGC_FP64_Vector2* vector)
|
|
{
|
|
return bgc_fp64_is_square_unit(bgc_fp64_vector2_get_square_modulus(vector));
|
|
}
|
|
|
|
// ==================== Copy ==================== //
|
|
|
|
inline void bgc_fp32_vector2_copy(BGC_FP32_Vector2* destination, const BGC_FP32_Vector2* source)
|
|
{
|
|
destination->x1 = source->x1;
|
|
destination->x2 = source->x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_copy(BGC_FP64_Vector2* destination, const BGC_FP64_Vector2* source)
|
|
{
|
|
destination->x1 = source->x1;
|
|
destination->x2 = source->x2;
|
|
}
|
|
|
|
// ==================== Swap ==================== //
|
|
|
|
inline void bgc_fp32_vector2_swap(BGC_FP32_Vector2* vector1, BGC_FP32_Vector2* vector2)
|
|
{
|
|
const float x1 = vector2->x1;
|
|
const float x2 = vector2->x2;
|
|
|
|
vector2->x1 = vector1->x1;
|
|
vector2->x2 = vector1->x2;
|
|
|
|
vector1->x1 = x1;
|
|
vector1->x2 = x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_swap(BGC_FP64_Vector2* vector1, BGC_FP64_Vector2* vector2)
|
|
{
|
|
const double x1 = vector2->x1;
|
|
const double x2 = vector2->x2;
|
|
|
|
vector2->x1 = vector1->x1;
|
|
vector2->x2 = vector1->x2;
|
|
|
|
vector1->x1 = x1;
|
|
vector1->x2 = x2;
|
|
}
|
|
|
|
// ================== Convert =================== //
|
|
|
|
inline void bgc_fp32_vector2_convert_to_fp64(BGC_FP64_Vector2* destination, const BGC_FP32_Vector2* source)
|
|
{
|
|
destination->x1 = source->x1;
|
|
destination->x2 = source->x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_convert_to_fp32(BGC_FP32_Vector2* destination, const BGC_FP64_Vector2* source)
|
|
{
|
|
destination->x1 = (float)source->x1;
|
|
destination->x2 = (float)source->x2;
|
|
}
|
|
|
|
// ==================== Add ===================== //
|
|
|
|
inline void bgc_fp32_vector2_add(BGC_FP32_Vector2* sum, const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
sum->x1 = vector1->x1 + vector2->x1;
|
|
sum->x2 = vector1->x2 + vector2->x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_add(BGC_FP64_Vector2* sum, const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
sum->x1 = vector1->x1 + vector2->x1;
|
|
sum->x2 = vector1->x2 + vector2->x2;
|
|
}
|
|
|
|
// ================= Add scaled ================= //
|
|
|
|
inline void bgc_fp32_vector2_add_scaled(BGC_FP32_Vector2* sum, const BGC_FP32_Vector2* basic_vector, const BGC_FP32_Vector2* scalable_vector, const float scale)
|
|
{
|
|
sum->x1 = basic_vector->x1 + scalable_vector->x1 * scale;
|
|
sum->x2 = basic_vector->x2 + scalable_vector->x2 * scale;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_add_scaled(BGC_FP64_Vector2* sum, const BGC_FP64_Vector2* basic_vector, const BGC_FP64_Vector2* scalable_vector, const double scale)
|
|
{
|
|
sum->x1 = basic_vector->x1 + scalable_vector->x1 * scale;
|
|
sum->x2 = basic_vector->x2 + scalable_vector->x2 * scale;
|
|
}
|
|
|
|
// ================== Subtract ================== //
|
|
|
|
inline void bgc_fp32_vector2_subtract(BGC_FP32_Vector2* difference, const BGC_FP32_Vector2* minuend, const BGC_FP32_Vector2* subtrahend)
|
|
{
|
|
difference->x1 = minuend->x1 - subtrahend->x1;
|
|
difference->x2 = minuend->x2 - subtrahend->x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_subtract(BGC_FP64_Vector2* difference, const BGC_FP64_Vector2* minuend, const BGC_FP64_Vector2* subtrahend)
|
|
{
|
|
difference->x1 = minuend->x1 - subtrahend->x1;
|
|
difference->x2 = minuend->x2 - subtrahend->x2;
|
|
}
|
|
|
|
// ================== Multiply ================== //
|
|
|
|
inline void bgc_fp32_vector2_multiply(BGC_FP32_Vector2* product, const BGC_FP32_Vector2* multiplicand, const float multiplier)
|
|
{
|
|
product->x1 = multiplicand->x1 * multiplier;
|
|
product->x2 = multiplicand->x2 * multiplier;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_multiply(BGC_FP64_Vector2* product, const BGC_FP64_Vector2* multiplicand, const double multiplier)
|
|
{
|
|
product->x1 = multiplicand->x1 * multiplier;
|
|
product->x2 = multiplicand->x2 * multiplier;
|
|
}
|
|
|
|
// =================== Divide =================== //
|
|
|
|
inline void bgc_fp32_vector2_divide(BGC_FP32_Vector2* quotient, const BGC_FP32_Vector2* dividend, const float divisor)
|
|
{
|
|
bgc_fp32_vector2_multiply(quotient, dividend, 1.0f / divisor);
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_divide(BGC_FP64_Vector2* quotient, const BGC_FP64_Vector2* dividend, const double divisor)
|
|
{
|
|
bgc_fp64_vector2_multiply(quotient, dividend, 1.0 / divisor);
|
|
}
|
|
|
|
// ================ Mean of Two ================= //
|
|
|
|
inline void bgc_fp32_vector2_get_mean2(BGC_FP32_Vector2* mean, const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1) * 0.5f;
|
|
mean->x2 = (vector1->x2 + vector2->x2) * 0.5f;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_get_mean2(BGC_FP64_Vector2* mean, const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1) * 0.5;
|
|
mean->x2 = (vector1->x2 + vector2->x2) * 0.5;
|
|
}
|
|
|
|
// =============== Mean of Three ================ //
|
|
|
|
inline void bgc_fp32_vector2_get_mean3(BGC_FP32_Vector2* mean, const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2, const BGC_FP32_Vector2* vector3)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_FP32_ONE_THIRD;
|
|
mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_FP32_ONE_THIRD;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_get_mean3(BGC_FP64_Vector2* mean, const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2, const BGC_FP64_Vector2* vector3)
|
|
{
|
|
mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_FP64_ONE_THIRD;
|
|
mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_FP64_ONE_THIRD;
|
|
}
|
|
|
|
// =================== Linear =================== //
|
|
|
|
inline void bgc_fp32_vector2_interpolate(BGC_FP32_Vector2* interpolation, const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2, const float phase)
|
|
{
|
|
const float counter_phase = 1.0f - phase;
|
|
|
|
interpolation->x1 = vector1->x1 * counter_phase + vector2->x1 * phase;
|
|
interpolation->x2 = vector1->x2 * counter_phase + vector2->x2 * phase;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_interpolate(BGC_FP64_Vector2* interpolation, const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2, const double phase)
|
|
{
|
|
const double counter_phase = 1.0 - phase;
|
|
|
|
interpolation->x1 = vector1->x1 * counter_phase + vector2->x1 * phase;
|
|
interpolation->x2 = vector1->x2 * counter_phase + vector2->x2 * phase;
|
|
}
|
|
|
|
// ================== Negative ================== //
|
|
|
|
inline void bgc_fp32_vector2_revert(BGC_FP32_Vector2* vector)
|
|
{
|
|
vector->x1 = -vector->x1;
|
|
vector->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_revert(BGC_FP64_Vector2* vector)
|
|
{
|
|
vector->x1 = -vector->x1;
|
|
vector->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_fp32_vector2_get_reverse(BGC_FP32_Vector2* reverse, const BGC_FP32_Vector2* vector)
|
|
{
|
|
reverse->x1 = -vector->x1;
|
|
reverse->x2 = -vector->x2;
|
|
}
|
|
|
|
inline void bgc_fp64_vector2_get_reverse(BGC_FP64_Vector2* reverse, const BGC_FP64_Vector2* vector)
|
|
{
|
|
reverse->x1 = -vector->x1;
|
|
reverse->x2 = -vector->x2;
|
|
}
|
|
|
|
// ================= Normalize ================== //
|
|
|
|
inline int bgc_fp32_vector2_normalize(BGC_FP32_Vector2* vector)
|
|
{
|
|
const float square_modulus = bgc_fp32_vector2_get_square_modulus(vector);
|
|
|
|
if (bgc_fp32_is_square_unit(square_modulus)) {
|
|
return 1;
|
|
}
|
|
|
|
if (square_modulus <= BGC_FP32_SQUARE_EPSILON || isnan(square_modulus)) {
|
|
return 0;
|
|
}
|
|
|
|
const float multiplier = sqrtf(1.0f / square_modulus);
|
|
|
|
vector->x1 *= multiplier;
|
|
vector->x2 *= multiplier;
|
|
|
|
return 1;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_normalize(BGC_FP64_Vector2* vector)
|
|
{
|
|
const double square_modulus = bgc_fp64_vector2_get_square_modulus(vector);
|
|
|
|
if (bgc_fp64_is_square_unit(square_modulus)) {
|
|
return 1;
|
|
}
|
|
|
|
if (square_modulus <= BGC_FP64_SQUARE_EPSILON || isnan(square_modulus)) {
|
|
return 0;
|
|
}
|
|
|
|
const double multiplier = sqrt(1.0 / square_modulus);
|
|
|
|
vector->x1 *= multiplier;
|
|
vector->x2 *= multiplier;
|
|
|
|
return 1;
|
|
}
|
|
|
|
inline int bgc_fp32_vector2_get_normalized(BGC_FP32_Vector2* normalized, const BGC_FP32_Vector2* vector)
|
|
{
|
|
const float square_modulus = bgc_fp32_vector2_get_square_modulus(vector);
|
|
|
|
if (bgc_fp32_is_square_unit(square_modulus)) {
|
|
bgc_fp32_vector2_copy(normalized, vector);
|
|
return 1;
|
|
}
|
|
|
|
if (square_modulus <= BGC_FP32_SQUARE_EPSILON || isnan(square_modulus)) {
|
|
bgc_fp32_vector2_reset(normalized);
|
|
return 0;
|
|
}
|
|
|
|
bgc_fp32_vector2_multiply(normalized, vector, sqrtf(1.0f / square_modulus));
|
|
return 1;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_get_normalized(BGC_FP64_Vector2* normalized, const BGC_FP64_Vector2* vector)
|
|
{
|
|
const double square_modulus = bgc_fp64_vector2_get_square_modulus(vector);
|
|
|
|
if (bgc_fp64_is_square_unit(square_modulus)) {
|
|
bgc_fp64_vector2_copy(normalized, vector);
|
|
return 1;
|
|
}
|
|
|
|
if (square_modulus <= BGC_FP64_SQUARE_EPSILON || isnan(square_modulus)) {
|
|
bgc_fp64_vector2_reset(normalized);
|
|
return 0;
|
|
}
|
|
|
|
bgc_fp64_vector2_multiply(normalized, vector, sqrt(1.0 / square_modulus));
|
|
return 1;
|
|
}
|
|
|
|
// ============= Get Scalar Product ============= //
|
|
|
|
inline float bgc_fp32_vector2_get_dot_product(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2;
|
|
}
|
|
|
|
inline double bgc_fp64_vector2_get_dot_product(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2;
|
|
}
|
|
|
|
// ============= Get Cross Product ============== //
|
|
|
|
inline float bgc_fp32_vector2_get_cross_product(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1;
|
|
}
|
|
|
|
inline double bgc_fp64_vector2_get_cross_product(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1;
|
|
}
|
|
|
|
// ================= Get Angle ================== //
|
|
|
|
float bgc_fp32_vector2_get_angle(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2, const int angle_unit);
|
|
|
|
double bgc_fp64_vector2_get_angle(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2, const int angle_unit);
|
|
|
|
// ============= Get Square Distance ============ //
|
|
|
|
inline float bgc_fp32_vector2_get_square_distance(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
const float dx1 = vector1->x1 - vector2->x1;
|
|
const float dx2 = vector1->x2 - vector2->x2;
|
|
|
|
return dx1 * dx1 + dx2 * dx2;
|
|
}
|
|
|
|
inline double bgc_fp64_vector2_get_square_distance(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
const double dx1 = vector1->x1 - vector2->x1;
|
|
const double dx2 = vector1->x2 - vector2->x2;
|
|
|
|
return dx1 * dx1 + dx2 * dx2;
|
|
}
|
|
|
|
// ================== Distance ================== //
|
|
|
|
inline float bgc_fp32_vector2_get_distance(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
return sqrtf(bgc_fp32_vector2_get_square_distance(vector1, vector2));
|
|
}
|
|
|
|
inline double bgc_fp64_vector2_get_distance(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
return sqrt(bgc_fp64_vector2_get_square_distance(vector1, vector2));
|
|
}
|
|
|
|
// ============== Are Close Enough ============== //
|
|
|
|
inline int bgc_fp32_vector2_are_close_enough(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2, const float distance_limit)
|
|
{
|
|
return bgc_fp32_vector2_get_square_distance(vector1, vector2) <= distance_limit * distance_limit;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_are_close_enough(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2, const double distance_limit)
|
|
{
|
|
return bgc_fp64_vector2_get_square_distance(vector1, vector2) <= distance_limit * distance_limit;
|
|
}
|
|
|
|
// ================== Are Close ================= //
|
|
|
|
inline int bgc_fp32_vector2_are_close(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
const float square_modulus1 = bgc_fp32_vector2_get_square_modulus(vector1);
|
|
const float square_modulus2 = bgc_fp32_vector2_get_square_modulus(vector2);
|
|
const float square_distance = bgc_fp32_vector2_get_square_distance(vector1, vector2);
|
|
|
|
if (square_modulus1 <= BGC_FP32_EPSILON_EFFECTIVENESS_LIMIT || square_modulus2 <= BGC_FP32_EPSILON_EFFECTIVENESS_LIMIT) {
|
|
return square_distance <= BGC_FP32_SQUARE_EPSILON;
|
|
}
|
|
|
|
return square_distance <= BGC_FP32_SQUARE_EPSILON * square_modulus1 && square_distance <= BGC_FP32_SQUARE_EPSILON * square_modulus2;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_are_close(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
const double square_modulus1 = bgc_fp64_vector2_get_square_modulus(vector1);
|
|
const double square_modulus2 = bgc_fp64_vector2_get_square_modulus(vector2);
|
|
const double square_distance = bgc_fp64_vector2_get_square_distance(vector1, vector2);
|
|
|
|
if (square_modulus1 <= BGC_FP64_EPSILON_EFFECTIVENESS_LIMIT || square_modulus2 <= BGC_FP64_EPSILON_EFFECTIVENESS_LIMIT) {
|
|
return square_distance <= BGC_FP64_SQUARE_EPSILON;
|
|
}
|
|
|
|
return square_distance <= BGC_FP64_SQUARE_EPSILON * square_modulus1 && square_distance <= BGC_FP64_SQUARE_EPSILON * square_modulus2;
|
|
}
|
|
|
|
|
|
// ================== Parallel ================== //
|
|
|
|
inline int bgc_fp32_vector2_are_parallel(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
const float square_modulus1 = bgc_fp32_vector2_get_square_modulus(vector1);
|
|
|
|
if (square_modulus1 <= BGC_FP32_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const float square_modulus2 = bgc_fp32_vector2_get_square_modulus(vector2);
|
|
|
|
if (square_modulus2 <= BGC_FP32_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const float cross_product = bgc_fp32_vector2_get_cross_product(vector1, vector2);
|
|
|
|
return cross_product * cross_product <= BGC_FP32_SQUARE_EPSILON * square_modulus1 * square_modulus2;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_are_parallel(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
const double square_modulus1 = bgc_fp64_vector2_get_square_modulus(vector1);
|
|
|
|
if (square_modulus1 <= BGC_FP64_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const double square_modulus2 = bgc_fp64_vector2_get_square_modulus(vector2);
|
|
|
|
if (square_modulus2 <= BGC_FP64_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const double cross_product = bgc_fp64_vector2_get_cross_product(vector1, vector2);
|
|
|
|
return cross_product * cross_product <= BGC_FP64_SQUARE_EPSILON * square_modulus1 * square_modulus2;
|
|
}
|
|
|
|
// ================= Orthogonal ================= //
|
|
|
|
inline int bgc_fp32_vector2_are_orthogonal(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
const float square_modulus1 = bgc_fp32_vector2_get_square_modulus(vector1);
|
|
|
|
if (square_modulus1 <= BGC_FP32_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const float square_modulus2 = bgc_fp32_vector2_get_square_modulus(vector2);
|
|
|
|
if (square_modulus2 <= BGC_FP32_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const float scalar_product = bgc_fp32_vector2_get_dot_product(vector1, vector2);
|
|
|
|
return scalar_product * scalar_product <= BGC_FP32_SQUARE_EPSILON * square_modulus1 * square_modulus2;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_are_orthogonal(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
const double square_modulus1 = bgc_fp64_vector2_get_square_modulus(vector1);
|
|
|
|
if (square_modulus1 <= BGC_FP64_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const double square_modulus2 = bgc_fp64_vector2_get_square_modulus(vector2);
|
|
|
|
if (square_modulus2 <= BGC_FP64_SQUARE_EPSILON) {
|
|
return 1;
|
|
}
|
|
|
|
const double scalar_product = bgc_fp64_vector2_get_dot_product(vector1, vector2);
|
|
|
|
return scalar_product * scalar_product <= BGC_FP64_SQUARE_EPSILON * square_modulus1 * square_modulus2;
|
|
}
|
|
|
|
|
|
// ================== Attitude ================== //
|
|
|
|
inline int bgc_fp32_vector2_get_attitude(const BGC_FP32_Vector2* vector1, const BGC_FP32_Vector2* vector2)
|
|
{
|
|
const float square_modulus1 = bgc_fp32_vector2_get_square_modulus(vector1);
|
|
const float square_modulus2 = bgc_fp32_vector2_get_square_modulus(vector2);
|
|
|
|
if (square_modulus1 <= BGC_FP32_SQUARE_EPSILON || square_modulus2 <= BGC_FP32_SQUARE_EPSILON) {
|
|
return BGC_ATTITUDE_ZERO;
|
|
}
|
|
|
|
const float square_limit = BGC_FP32_SQUARE_EPSILON * square_modulus1 * square_modulus2;
|
|
|
|
const float scalar_product = bgc_fp32_vector2_get_dot_product(vector1, vector2);
|
|
|
|
if (scalar_product * scalar_product <= square_limit) {
|
|
return BGC_ATTITUDE_ORTHOGONAL;
|
|
}
|
|
|
|
const float cross_product = bgc_fp32_vector2_get_cross_product(vector1, vector2);
|
|
|
|
if (cross_product * cross_product > square_limit) {
|
|
return BGC_ATTITUDE_ANY;
|
|
}
|
|
|
|
return scalar_product > 0.0f ? BGC_ATTITUDE_CO_DIRECTIONAL : BGC_ATTITUDE_COUNTER_DIRECTIONAL;
|
|
}
|
|
|
|
inline int bgc_fp64_vector2_get_attitude(const BGC_FP64_Vector2* vector1, const BGC_FP64_Vector2* vector2)
|
|
{
|
|
const double square_modulus1 = bgc_fp64_vector2_get_square_modulus(vector1);
|
|
const double square_modulus2 = bgc_fp64_vector2_get_square_modulus(vector2);
|
|
|
|
if (square_modulus1 <= BGC_FP64_SQUARE_EPSILON || square_modulus2 <= BGC_FP64_SQUARE_EPSILON) {
|
|
return BGC_ATTITUDE_ZERO;
|
|
}
|
|
|
|
const double square_limit = BGC_FP64_SQUARE_EPSILON * square_modulus1 * square_modulus2;
|
|
|
|
const double scalar_product = bgc_fp64_vector2_get_dot_product(vector1, vector2);
|
|
|
|
if (scalar_product * scalar_product <= square_limit) {
|
|
return BGC_ATTITUDE_ORTHOGONAL;
|
|
}
|
|
|
|
const double cross_product = bgc_fp64_vector2_get_cross_product(vector1, vector2);
|
|
|
|
if (cross_product * cross_product > square_limit) {
|
|
return BGC_ATTITUDE_ANY;
|
|
}
|
|
|
|
return scalar_product > 0.0 ? BGC_ATTITUDE_CO_DIRECTIONAL : BGC_ATTITUDE_COUNTER_DIRECTIONAL;
|
|
}
|
|
|
|
#endif
|