bgc-c/basic-geometry/quaternion.h

482 lines
16 KiB
C

#ifndef _GEOMETRY_QUATERNION_H_
#define _GEOMETRY_QUATERNION_H_
#include <math.h>
#include "basis.h"
#include "angle.h"
#include "matrix3x3.h"
typedef struct {
float s0, x1, x2, x3;
} BgFP32Quaternion;
typedef struct {
double s0, x1, x2, x3;
} BgFP64Quaternion;
// ==================== Reset =================== //
static inline void bg_fp32_quaternion_reset(BgFP32Quaternion * quaternion)
{
quaternion->s0 = 0.0f;
quaternion->x1 = 0.0f;
quaternion->x2 = 0.0f;
quaternion->x3 = 0.0f;
}
static inline void bg_fp64_quaternion_reset(BgFP64Quaternion * quaternion)
{
quaternion->s0 = 0.0;
quaternion->x1 = 0.0;
quaternion->x2 = 0.0;
quaternion->x3 = 0.0;
}
// ================== Set Unit ================== //
static inline void bg_fp32_quaternion_set_identity(BgFP32Quaternion * quaternion)
{
quaternion->s0 = 1.0f;
quaternion->x1 = 0.0f;
quaternion->x2 = 0.0f;
quaternion->x3 = 0.0f;
}
static inline void bg_fp64_quaternion_set_identity(BgFP64Quaternion * quaternion)
{
quaternion->s0 = 1.0;
quaternion->x1 = 0.0;
quaternion->x2 = 0.0;
quaternion->x3 = 0.0;
}
// ==================== Set ===================== //
static inline void bg_fp32_quaternion_set_values(const float s0, const float x1, const float x2, const float x3, BgFP32Quaternion * quaternion)
{
quaternion->s0 = s0;
quaternion->x1 = x1;
quaternion->x2 = x2;
quaternion->x3 = x3;
}
static inline void bg_fp64_quaternion_set_values(const double s0, const double x1, const double x2, const double x3, BgFP64Quaternion * quaternion)
{
quaternion->s0 = s0;
quaternion->x1 = x1;
quaternion->x2 = x2;
quaternion->x3 = x3;
}
// ==================== Copy ==================== //
static inline void bg_fp32_quaternion_copy(const BgFP32Quaternion* from, BgFP32Quaternion* to)
{
to->s0 = from->s0;
to->x1 = from->x1;
to->x2 = from->x2;
to->x3 = from->x3;
}
static inline void bg_fp64_quaternion_copy(const BgFP64Quaternion* from, BgFP64Quaternion* to)
{
to->s0 = from->s0;
to->x1 = from->x1;
to->x2 = from->x2;
to->x3 = from->x3;
}
// ============= Copy to twin type ============== //
static inline void bg_fp32_quaternion_set_from_fp64(const BgFP64Quaternion* quaternion, BgFP32Quaternion* result)
{
result->s0 = (float) quaternion->s0;
result->x1 = (float) quaternion->x1;
result->x2 = (float) quaternion->x2;
result->x3 = (float) quaternion->x3;
}
static inline void bg_fp64_quaternion_set_from_fp32(const BgFP32Quaternion* quaternion, BgFP64Quaternion* result)
{
result->s0 = quaternion->s0;
result->x1 = quaternion->x1;
result->x2 = quaternion->x2;
result->x3 = quaternion->x3;
}
// ================= Inversion ================== //
static inline void bg_fp32_quaternion_conjugate(BgFP32Quaternion* quaternion)
{
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
static inline void bg_fp64_quaternion_conjugate(BgFP64Quaternion* quaternion)
{
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
// ================ Set Conjugate =============== //
static inline void bg_fp32_quaternion_set_conjugate(const BgFP32Quaternion* quaternion, BgFP32Quaternion* result)
{
result->s0 = quaternion->s0;
result->x1 = -quaternion->x1;
result->x2 = -quaternion->x2;
result->x3 = -quaternion->x3;
}
static inline void bg_fp64_quaternion_set_conjugate(const BgFP64Quaternion* quaternion, BgFP64Quaternion* result)
{
result->s0 = quaternion->s0;
result->x1 = -quaternion->x1;
result->x2 = -quaternion->x2;
result->x3 = -quaternion->x3;
}
// ================ Set Conjugate =============== //
static inline void bg_fp32_quaternion_set_conjugate_fp64(const BgFP64Quaternion* quaternion, BgFP32Quaternion* result)
{
result->s0 = (float) quaternion->s0;
result->x1 = (float) -quaternion->x1;
result->x2 = (float) -quaternion->x2;
result->x3 = (float) -quaternion->x3;
}
static inline void bg_fp64_quaternion_set_conjugate_fp32(const BgFP32Quaternion* quaternion, BgFP64Quaternion* result)
{
result->s0 = quaternion->s0;
result->x1 = -quaternion->x1;
result->x2 = -quaternion->x2;
result->x3 = -quaternion->x3;
}
// ============= Get Square Modulus ============= //
static inline float bg_fp32_quaternion_get_square_modulus(const BgFP32Quaternion* quaternion)
{
return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3);
}
static inline double bg_fp64_quaternion_get_square_modulus(const BgFP64Quaternion* quaternion)
{
return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3);
}
// ================ Get Modulus ================= //
static inline float bg_fp32_quaternion_get_modulus(const BgFP32Quaternion* quaternion)
{
return sqrtf(bg_fp32_quaternion_get_square_modulus(quaternion));
}
static inline double bg_fp64_quaternion_get_modulus(const BgFP64Quaternion* quaternion)
{
return sqrt(bg_fp64_quaternion_get_square_modulus(quaternion));
}
// =============== Normalization ================ //
static inline int bg_fp32_quaternion_normalize(BgFP32Quaternion* quaternion)
{
const float square_modulus = bg_fp32_quaternion_get_square_modulus(quaternion);
if (1.0f - BG_FP32_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + BG_FP32_TWO_EPSYLON) {
return 1;
}
if (square_modulus <= BG_FP32_SQUARE_EPSYLON) {
bg_fp32_quaternion_reset(quaternion);
return 0;
}
const float multiplier = sqrtf(1.0f / square_modulus);
quaternion->s0 *= multiplier;
quaternion->x1 *= multiplier;
quaternion->x2 *= multiplier;
quaternion->x3 *= multiplier;
return 1;
}
static inline int bg_fp64_quaternion_normalize(BgFP64Quaternion* quaternion)
{
const double square_modulus = bg_fp64_quaternion_get_square_modulus(quaternion);
if (1.0 - BG_FP64_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0 + BG_FP64_TWO_EPSYLON) {
return 1;
}
if (square_modulus <= BG_FP32_SQUARE_EPSYLON) {
bg_fp64_quaternion_reset(quaternion);
return 0;
}
const double multiplier = sqrt(1.0 / square_modulus);
quaternion->s0 *= multiplier;
quaternion->x1 *= multiplier;
quaternion->x2 *= multiplier;
quaternion->x3 *= multiplier;
return 1;
}
// ============ Make Rotation Matrix ============ //
static inline void bg_fp32_quaternion_get_rotation_matrix(const BgFP32Quaternion* quaternion, BgFP32Matrix3x3* matrix)
{
const float s0s0 = quaternion->s0 * quaternion->s0;
const float x1x1 = quaternion->x1 * quaternion->x1;
const float x2x2 = quaternion->x2 * quaternion->x2;
const float x3x3 = quaternion->x3 * quaternion->x3;
const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-BG_FP32_EPSYLON <= square_modulus && square_modulus <= BG_FP32_EPSYLON)
{
bg_fp32_matrix3x3_set_to_identity(matrix);
return;
}
const float corrector1 = 1.0f / square_modulus;
const float corrector2 = 2.0f * corrector1;
const float s0x1 = quaternion->s0 * quaternion->x1;
const float s0x2 = quaternion->s0 * quaternion->x2;
const float s0x3 = quaternion->s0 * quaternion->x3;
const float x1x2 = quaternion->x1 * quaternion->x2;
const float x1x3 = quaternion->x1 * quaternion->x3;
const float x2x3 = quaternion->x2 * quaternion->x3;
matrix->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix->r1c2 = corrector2 * (x1x2 - s0x3);
matrix->r2c3 = corrector2 * (x2x3 - s0x1);
matrix->r3c1 = corrector2 * (x1x3 - s0x2);
matrix->r2c1 = corrector2 * (x1x2 + s0x3);
matrix->r3c2 = corrector2 * (x2x3 + s0x1);
matrix->r1c3 = corrector2 * (x1x3 + s0x2);
}
static inline void bg_fp64_quaternion_get_rotation_matrix(const BgFP64Quaternion* quaternion, BgFP64Matrix3x3* matrix)
{
const double s0s0 = quaternion->s0 * quaternion->s0;
const double x1x1 = quaternion->x1 * quaternion->x1;
const double x2x2 = quaternion->x2 * quaternion->x2;
const double x3x3 = quaternion->x3 * quaternion->x3;
const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-BG_FP64_EPSYLON <= square_modulus && square_modulus <= BG_FP64_EPSYLON)
{
bg_fp64_matrix3x3_set_to_identity(matrix);
return;
}
const double corrector1 = 1.0f / square_modulus;
const double corrector2 = 2.0f * corrector1;
const double s0x1 = quaternion->s0 * quaternion->x1;
const double s0x2 = quaternion->s0 * quaternion->x2;
const double s0x3 = quaternion->s0 * quaternion->x3;
const double x1x2 = quaternion->x1 * quaternion->x2;
const double x1x3 = quaternion->x1 * quaternion->x3;
const double x2x3 = quaternion->x2 * quaternion->x3;
matrix->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix->r1c2 = corrector2 * (x1x2 - s0x3);
matrix->r2c3 = corrector2 * (x2x3 - s0x1);
matrix->r3c1 = corrector2 * (x1x3 - s0x2);
matrix->r2c1 = corrector2 * (x1x2 + s0x3);
matrix->r3c2 = corrector2 * (x2x3 + s0x1);
matrix->r1c3 = corrector2 * (x1x3 + s0x2);
}
// ============ Make Reverse Matrix ============= //
static inline void bg_fp32_quaternion_get_reverse_matrix(const BgFP32Quaternion* quaternion, BgFP32Matrix3x3* matrix)
{
const float s0s0 = quaternion->s0 * quaternion->s0;
const float x1x1 = quaternion->x1 * quaternion->x1;
const float x2x2 = quaternion->x2 * quaternion->x2;
const float x3x3 = quaternion->x3 * quaternion->x3;
const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-BG_FP32_EPSYLON <= square_modulus && square_modulus <= BG_FP32_EPSYLON)
{
bg_fp32_matrix3x3_set_to_identity(matrix);
return;
}
const float corrector1 = 1.0f / square_modulus;
const float corrector2 = 2.0f * corrector1;
const float s0x1 = quaternion->s0 * quaternion->x1;
const float s0x2 = quaternion->s0 * quaternion->x2;
const float s0x3 = quaternion->s0 * quaternion->x3;
const float x1x2 = quaternion->x1 * quaternion->x2;
const float x1x3 = quaternion->x1 * quaternion->x3;
const float x2x3 = quaternion->x2 * quaternion->x3;
matrix->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix->r1c2 = corrector2 * (x1x2 + s0x3);
matrix->r2c3 = corrector2 * (x2x3 + s0x1);
matrix->r3c1 = corrector2 * (x1x3 + s0x2);
matrix->r2c1 = corrector2 * (x1x2 - s0x3);
matrix->r3c2 = corrector2 * (x2x3 - s0x1);
matrix->r1c3 = corrector2 * (x1x3 - s0x2);
}
static inline void bg_fp64_quaternion_get_reverse_matrix(const BgFP64Quaternion* quaternion, BgFP64Matrix3x3* matrix)
{
const double s0s0 = quaternion->s0 * quaternion->s0;
const double x1x1 = quaternion->x1 * quaternion->x1;
const double x2x2 = quaternion->x2 * quaternion->x2;
const double x3x3 = quaternion->x3 * quaternion->x3;
const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (-BG_FP64_EPSYLON <= square_modulus && square_modulus <= BG_FP64_EPSYLON)
{
bg_fp64_matrix3x3_set_to_identity(matrix);
return;
}
const double corrector1 = 1.0f / square_modulus;
const double corrector2 = 2.0f * corrector1;
const double s0x1 = quaternion->s0 * quaternion->x1;
const double s0x2 = quaternion->s0 * quaternion->x2;
const double s0x3 = quaternion->s0 * quaternion->x3;
const double x1x2 = quaternion->x1 * quaternion->x2;
const double x1x3 = quaternion->x1 * quaternion->x3;
const double x2x3 = quaternion->x2 * quaternion->x3;
matrix->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
matrix->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
matrix->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
matrix->r1c2 = corrector2 * (x1x2 + s0x3);
matrix->r2c3 = corrector2 * (x2x3 + s0x1);
matrix->r3c1 = corrector2 * (x1x3 + s0x2);
matrix->r2c1 = corrector2 * (x1x2 - s0x3);
matrix->r3c2 = corrector2 * (x2x3 - s0x1);
matrix->r1c3 = corrector2 * (x1x3 - s0x2);
}
// ==================== Add ===================== //
static inline void bg_fp32_quaternion_add(const BgFP32Quaternion * quaternion1, const BgFP32Quaternion * quaternion2, BgFP32Quaternion * result)
{
result->s0 = quaternion1->s0 + quaternion2->s0;
result->x1 = quaternion1->x1 + quaternion2->x1;
result->x2 = quaternion1->x2 + quaternion2->x2;
result->x3 = quaternion1->x3 + quaternion2->x3;
}
static inline void bg_fp64_quaternion_add(const BgFP64Quaternion * quaternion1, const BgFP64Quaternion * quaternion2, BgFP64Quaternion * result)
{
result->s0 = quaternion1->s0 + quaternion2->s0;
result->x1 = quaternion1->x1 + quaternion2->x1;
result->x2 = quaternion1->x2 + quaternion2->x2;
result->x3 = quaternion1->x3 + quaternion2->x3;
}
// ================== Subtract ================== //
static inline void bg_fp32_quaternion_subtract(const BgFP32Quaternion * minuend, const BgFP32Quaternion * subtrahend, BgFP32Quaternion * difference)
{
difference->s0 = minuend->s0 - subtrahend->s0;
difference->x1 = minuend->x1 - subtrahend->x1;
difference->x2 = minuend->x2 - subtrahend->x2;
difference->x3 = minuend->x3 - subtrahend->x3;
}
static inline void bg_fp64_quaternion_subtract(const BgFP64Quaternion * minuend, const BgFP64Quaternion * subtrahend, BgFP64Quaternion * difference)
{
difference->s0 = minuend->s0 - subtrahend->s0;
difference->x1 = minuend->x1 - subtrahend->x1;
difference->x2 = minuend->x2 - subtrahend->x2;
difference->x3 = minuend->x3 - subtrahend->x3;
}
// =============== Multiplication =============== //
static inline void bg_fp32_quaternion_multiply(const BgFP32Quaternion* multiplicand, const float multipier, BgFP32Quaternion* product)
{
product->s0 = multiplicand->s0 * multipier;
product->x1 = multiplicand->x1 * multipier;
product->x2 = multiplicand->x2 * multipier;
product->x3 = multiplicand->x3 * multipier;
}
static inline void bg_fp64_quaternion_multiply(const BgFP64Quaternion* multiplicand, const double multipier, BgFP64Quaternion* product)
{
product->s0 = multiplicand->s0 * multipier;
product->x1 = multiplicand->x1 * multipier;
product->x2 = multiplicand->x2 * multipier;
product->x3 = multiplicand->x3 * multipier;
}
// ================== Division ================== //
static inline void bg_fp32_quaternion_divide(const BgFP32Quaternion* dividend, const float divisor, BgFP32Quaternion* quotient)
{
bg_fp32_quaternion_multiply(dividend, 1.0f / divisor, quotient);
}
static inline void bg_fp64_quaternion_divide(const BgFP64Quaternion* dividend, const double divisor, BgFP64Quaternion* quotient)
{
bg_fp64_quaternion_multiply(dividend, 1.0 / divisor, quotient);
}
// ================== Product =================== //
static inline void bg_fp32_quaternion_get_product(const BgFP32Quaternion* left, const BgFP32Quaternion* right, BgFP32Quaternion* product)
{
const float s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const float x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const float x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const float x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
static inline void bg_fp64_quaternion_get_product(const BgFP64Quaternion* left, const BgFP64Quaternion* right, BgFP64Quaternion* product)
{
const double s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const double x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const double x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const double x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
#endif // _GEOMETRY_QUATERNION_H_