bgc-c/basic-geometry/matrix2x2.h

634 lines
18 KiB
C

#ifndef _BGC_MATRIX2X2_H_INCLUDED_
#define _BGC_MATRIX2X2_H_INCLUDED_
#include "angle.h"
#include "vector2.h"
#include "matrices.h"
// =================== Reset ==================== //
inline void bgc_fp32_matrix2x2_reset(BGC_FP32_Matrix2x2* matrix)
{
matrix->r1c1 = 0.0f;
matrix->r1c2 = 0.0f;
matrix->r2c1 = 0.0f;
matrix->r2c2 = 0.0f;
}
inline void bgc_fp64_matrix2x2_reset(BGC_FP64_Matrix2x2* matrix)
{
matrix->r1c1 = 0.0;
matrix->r1c2 = 0.0;
matrix->r2c1 = 0.0;
matrix->r2c2 = 0.0;
}
// ================== Identity ================== //
inline void bgc_fp32_matrix2x2_make_identity(BGC_FP32_Matrix2x2* matrix)
{
matrix->r1c1 = 1.0f;
matrix->r1c2 = 0.0f;
matrix->r2c1 = 0.0f;
matrix->r2c2 = 1.0f;
}
inline void bgc_fp64_matrix2x2_make_identity(BGC_FP64_Matrix2x2* matrix)
{
matrix->r1c1 = 1.0;
matrix->r1c2 = 0.0;
matrix->r2c1 = 0.0;
matrix->r2c2 = 1.0;
}
// ================ Set Diagonal ================ //
inline void bgc_fp32_matrix2x2_make_diagonal(BGC_FP32_Matrix2x2* matrix, const float d1, const float d2)
{
matrix->r1c1 = d1;
matrix->r1c2 = 0.0f;
matrix->r2c1 = 0.0f;
matrix->r2c2 = d2;
}
inline void bgc_fp64_matrix2x2_make_diagonal(BGC_FP64_Matrix2x2* matrix, const double d1, const double d2)
{
matrix->r1c1 = d1;
matrix->r1c2 = 0.0;
matrix->r2c1 = 0.0;
matrix->r2c2 = d2;
}
// ============== Rotation Matrix =============== //
inline void bgc_fp32_matrix2x2_set_turn(BGC_FP32_Matrix2x2* matrix, const float angle, const int angle_unit)
{
const float radians = bgc_fp32_angle_to_radians(angle, angle_unit);
const float cosine = cosf(radians);
const float sine = sinf(radians);
matrix->r1c1 = cosine;
matrix->r1c2 = -sine;
matrix->r2c1 = sine;
matrix->r2c2 = cosine;
}
inline void bgc_fp64_matrix2x2_set_turn(BGC_FP64_Matrix2x2* matrix, const double angle, const int angle_unit)
{
const double radians = bgc_fp64_angle_to_radians(angle, angle_unit);
const double cosine = cos(radians);
const double sine = sin(radians);
matrix->r1c1 = cosine;
matrix->r1c2 = -sine;
matrix->r2c1 = sine;
matrix->r2c2 = cosine;
}
// ================ Determinant ================= //
inline float bgc_fp32_matrix2x2_get_determinant(const BGC_FP32_Matrix2x2* matrix)
{
return matrix->r1c1 * matrix->r2c2 - matrix->r1c2 * matrix->r2c1;
}
inline double bgc_fp64_matrix2x2_get_determinant(const BGC_FP64_Matrix2x2* matrix)
{
return matrix->r1c1 * matrix->r2c2 - matrix->r1c2 * matrix->r2c1;
}
// ================ Is Identity ================= //
inline int bgc_fp32_matrix2x2_is_identity(const BGC_FP32_Matrix2x2* matrix)
{
return bgc_fp32_is_unit(matrix->r1c1) && bgc_fp32_is_zero(matrix->r1c2)
&& bgc_fp32_is_zero(matrix->r2c1) && bgc_fp32_is_unit(matrix->r2c2);
}
inline int bgc_fp64_matrix2x2_is_identity(const BGC_FP64_Matrix2x2* matrix)
{
return bgc_fp64_is_unit(matrix->r1c1) && bgc_fp64_is_zero(matrix->r1c2)
&& bgc_fp64_is_zero(matrix->r2c1) && bgc_fp64_is_unit(matrix->r2c2);
}
// ================ Is Singular ================= //
inline int bgc_fp32_matrix2x2_is_singular(const BGC_FP32_Matrix2x2* matrix)
{
return bgc_fp32_is_zero(bgc_fp32_matrix2x2_get_determinant(matrix));
}
inline int bgc_fp64_matrix2x2_is_singular(const BGC_FP64_Matrix2x2* matrix)
{
return bgc_fp64_is_zero(bgc_fp64_matrix2x2_get_determinant(matrix));
}
// ================ Is Rotation ================= //
inline int bgc_fp32_matrix2x2_is_rotation(const BGC_FP32_Matrix2x2* matrix)
{
BGC_FP32_Matrix2x2 product;
product.r1c1 = matrix->r1c1 * matrix->r1c1 + matrix->r1c2 * matrix->r2c1;
product.r1c2 = matrix->r1c1 * matrix->r1c2 + matrix->r1c2 * matrix->r2c2;
product.r2c1 = matrix->r2c1 * matrix->r1c1 + matrix->r2c2 * matrix->r2c1;
product.r2c2 = matrix->r2c1 * matrix->r1c2 + matrix->r2c2 * matrix->r2c2;
return bgc_fp32_matrix2x2_is_identity(&product);
}
inline int bgc_fp64_matrix2x2_is_rotation(const BGC_FP64_Matrix2x2* matrix)
{
BGC_FP64_Matrix2x2 product;
product.r1c1 = matrix->r1c1 * matrix->r1c1 + matrix->r1c2 * matrix->r2c1;
product.r1c2 = matrix->r1c1 * matrix->r1c2 + matrix->r1c2 * matrix->r2c2;
product.r2c1 = matrix->r2c1 * matrix->r1c1 + matrix->r2c2 * matrix->r2c1;
product.r2c2 = matrix->r2c1 * matrix->r1c2 + matrix->r2c2 * matrix->r2c2;
return bgc_fp64_matrix2x2_is_identity(&product);
}
// ==================== Copy ==================== //
inline void bgc_fp32_matrix2x2_copy(BGC_FP32_Matrix2x2* destination, const BGC_FP32_Matrix2x2* source)
{
destination->r1c1 = source->r1c1;
destination->r1c2 = source->r1c2;
destination->r2c1 = source->r2c1;
destination->r2c2 = source->r2c2;
}
inline void bgc_fp64_matrix2x2_copy(BGC_FP64_Matrix2x2* destination, const BGC_FP64_Matrix2x2* source)
{
destination->r1c1 = source->r1c1;
destination->r1c2 = source->r1c2;
destination->r2c1 = source->r2c1;
destination->r2c2 = source->r2c2;
}
// ==================== Swap ==================== //
inline void bgc_fp32_matrix2x2_swap(BGC_FP32_Matrix2x2* matrix1, BGC_FP32_Matrix2x2* matrix2)
{
const float r1c1 = matrix2->r1c1;
const float r1c2 = matrix2->r1c2;
const float r2c1 = matrix2->r2c1;
const float r2c2 = matrix2->r2c2;
matrix2->r1c1 = matrix1->r1c1;
matrix2->r1c2 = matrix1->r1c2;
matrix2->r2c1 = matrix1->r2c1;
matrix2->r2c2 = matrix1->r2c2;
matrix1->r1c1 = r1c1;
matrix1->r1c2 = r1c2;
matrix1->r2c1 = r2c1;
matrix1->r2c2 = r2c2;
}
inline void bgc_fp64_matrix2x2_swap(BGC_FP64_Matrix2x2* matrix1, BGC_FP64_Matrix2x2* matrix2)
{
const double r1c1 = matrix2->r1c1;
const double r1c2 = matrix2->r1c2;
const double r2c1 = matrix2->r2c1;
const double r2c2 = matrix2->r2c2;
matrix2->r1c1 = matrix1->r1c1;
matrix2->r1c2 = matrix1->r1c2;
matrix2->r2c1 = matrix1->r2c1;
matrix2->r2c2 = matrix1->r2c2;
matrix1->r1c1 = r1c1;
matrix1->r1c2 = r1c2;
matrix1->r2c1 = r2c1;
matrix1->r2c2 = r2c2;
}
// ================== Convert =================== //
inline void bgc_fp64_matrix2x2_convert_to_fp32(BGC_FP32_Matrix2x2* destination, const BGC_FP64_Matrix2x2* source)
{
destination->r1c1 = (float)source->r1c1;
destination->r1c2 = (float)source->r1c2;
destination->r2c1 = (float)source->r2c1;
destination->r2c2 = (float)source->r2c2;
}
inline void bgc_fp32_matrix2x2_convert_to_fp64(BGC_FP64_Matrix2x2* destination, const BGC_FP32_Matrix2x2* source)
{
destination->r1c1 = source->r1c1;
destination->r1c2 = source->r1c2;
destination->r2c1 = source->r2c1;
destination->r2c2 = source->r2c2;
}
// ================ Get Inverse ================= //
inline int bgc_fp32_matrix2x2_get_inverse(BGC_FP32_Matrix2x2* inverse, const BGC_FP32_Matrix2x2* matrix)
{
const float determinant = bgc_fp32_matrix2x2_get_determinant(matrix);
if (bgc_fp32_is_zero(determinant)) {
return 0;
}
const float r1c1 = matrix->r2c2;
const float r1c2 = -matrix->r1c2;
const float r2c1 = -matrix->r2c1;
const float r2c2 = matrix->r1c1;
const float multiplier = 1.0f / determinant;
inverse->r1c1 = r1c1 * multiplier;
inverse->r1c2 = r1c2 * multiplier;
inverse->r2c1 = r2c1 * multiplier;
inverse->r2c2 = r2c2 * multiplier;
return 1;
}
inline int bgc_fp64_matrix2x2_get_inverse(BGC_FP64_Matrix2x2* inverse, const BGC_FP64_Matrix2x2* matrix)
{
const double determinant = bgc_fp64_matrix2x2_get_determinant(matrix);
if (bgc_fp64_is_zero(determinant)) {
return 0;
}
const double r1c1 = matrix->r2c2;
const double r1c2 = -matrix->r1c2;
const double r2c1 = -matrix->r2c1;
const double r2c2 = matrix->r1c1;
const double multiplier = 1.0 / determinant;
inverse->r1c1 = r1c1 * multiplier;
inverse->r1c2 = r1c2 * multiplier;
inverse->r2c1 = r2c1 * multiplier;
inverse->r2c2 = r2c2 * multiplier;
return 1;
}
// =================== Invert =================== //
inline int bgc_fp32_matrix2x2_invert(BGC_FP32_Matrix2x2* matrix)
{
return bgc_fp32_matrix2x2_get_inverse(matrix, matrix);
}
inline int bgc_fp64_matrix2x2_invert(BGC_FP64_Matrix2x2* matrix)
{
return bgc_fp64_matrix2x2_get_inverse(matrix, matrix);
}
// ================= Transpose ================== //
inline void bgc_fp32_matrix2x2_transpose(BGC_FP32_Matrix2x2* matrix)
{
const float r1c2 = matrix->r1c2;
matrix->r1c2 = matrix->r2c1;
matrix->r2c1 = r1c2;
}
inline void bgc_fp64_matrix2x2_transpose(BGC_FP64_Matrix2x2* matrix)
{
const double r1c2 = matrix->r1c2;
matrix->r1c2 = matrix->r2c1;
matrix->r2c1 = r1c2;
}
// =============== Get Transpose ================ //
inline void bgc_fp32_matrix2x2_get_transposed(BGC_FP32_Matrix2x2* transposed, const BGC_FP32_Matrix2x2* matrix)
{
const float r1c2 = matrix->r1c2;
transposed->r1c1 = matrix->r1c1;
transposed->r1c2 = matrix->r2c1;
transposed->r2c1 = r1c2;
transposed->r2c2 = matrix->r2c2;
}
inline void bgc_fp64_matrix2x2_get_transposed(BGC_FP64_Matrix2x2* transposed, const BGC_FP64_Matrix2x2* matrix)
{
const double r1c2 = matrix->r1c2;
transposed->r1c1 = matrix->r1c1;
transposed->r1c2 = matrix->r2c1;
transposed->r2c1 = r1c2;
transposed->r2c2 = matrix->r2c2;
}
// ================== Get Row =================== //
inline void bgc_fp32_matrix2x2_get_row(BGC_FP32_Vector2* row, const BGC_FP32_Matrix2x2* matrix, const int row_number)
{
if (row_number == 1) {
row->x1 = matrix->r1c1;
row->x2 = matrix->r1c2;
return;
}
if (row_number == 2) {
row->x1 = matrix->r2c1;
row->x2 = matrix->r2c2;
return;
}
row->x1 = 0.0f;
row->x2 = 0.0f;
}
inline void bgc_fp64_matrix2x2_get_row(BGC_FP64_Vector2* row, const BGC_FP64_Matrix2x2* matrix, const int row_number)
{
if (row_number == 1) {
row->x1 = matrix->r1c1;
row->x2 = matrix->r1c2;
return;
}
if (row_number == 2) {
row->x1 = matrix->r2c1;
row->x2 = matrix->r2c2;
return;
}
row->x1 = 0.0;
row->x2 = 0.0;
}
// ================== Set Row =================== //
inline void bgc_fp32_matrix2x2_set_row(BGC_FP32_Matrix2x2* matrix, const int row_number, const BGC_FP32_Vector2* row)
{
if (row_number == 1) {
matrix->r1c1 = row->x1;
matrix->r1c2 = row->x2;
return;
}
if (row_number == 2) {
matrix->r2c1 = row->x1;
matrix->r2c2 = row->x2;
}
}
inline void bgc_fp64_matrix2x2_set_row(BGC_FP64_Matrix2x2* matrix, const int row_number, const BGC_FP64_Vector2* row)
{
if (row_number == 1) {
matrix->r1c1 = row->x1;
matrix->r1c2 = row->x2;
return;
}
if (row_number == 2) {
matrix->r2c1 = row->x1;
matrix->r2c2 = row->x2;
}
}
// ================= Get Column ================= //
inline void bgc_fp32_matrix2x2_get_column(BGC_FP32_Vector2* column, const BGC_FP32_Matrix2x2* matrix, const int column_number)
{
if (column_number == 1) {
column->x1 = matrix->r1c1;
column->x2 = matrix->r2c1;
return;
}
if (column_number == 2) {
column->x1 = matrix->r1c2;
column->x2 = matrix->r2c2;
return;
}
column->x1 = 0.0f;
column->x2 = 0.0f;
}
inline void bgc_fp64_matrix2x2_get_column(BGC_FP64_Vector2* column, const BGC_FP64_Matrix2x2* matrix, const int column_number)
{
if (column_number == 1) {
column->x1 = matrix->r1c1;
column->x2 = matrix->r2c1;
return;
}
if (column_number == 2) {
column->x1 = matrix->r1c2;
column->x2 = matrix->r2c2;
return;
}
column->x1 = 0.0;
column->x2 = 0.0;
}
// ================= Set Column ================= //
inline void bgc_fp32_matrix2x2_set_column(BGC_FP32_Matrix2x2* matrix, const int column_number, const BGC_FP32_Vector2* column)
{
if (column_number == 1) {
matrix->r1c1 = column->x1;
matrix->r2c1 = column->x2;
return;
}
if (column_number == 2) {
matrix->r1c2 = column->x1;
matrix->r2c2 = column->x2;
}
}
inline void bgc_fp64_matrix2x2_set_column(BGC_FP64_Matrix2x2* matrix, const int column_number, const BGC_FP64_Vector2* column)
{
if (column_number == 1) {
matrix->r1c1 = column->x1;
matrix->r2c1 = column->x2;
return;
}
if (column_number == 2) {
matrix->r1c2 = column->x1;
matrix->r2c2 = column->x2;
}
}
// ==================== Add ===================== //
inline void bgc_fp32_matrix2x2_add(BGC_FP32_Matrix2x2* sum, const BGC_FP32_Matrix2x2* matrix1, const BGC_FP32_Matrix2x2* matrix2)
{
sum->r1c1 = matrix1->r1c1 + matrix2->r1c1;
sum->r1c2 = matrix1->r1c2 + matrix2->r1c2;
sum->r2c1 = matrix1->r2c1 + matrix2->r2c1;
sum->r2c2 = matrix1->r2c2 + matrix2->r2c2;
}
inline void bgc_fp64_matrix2x2_add(BGC_FP64_Matrix2x2* sum, const BGC_FP64_Matrix2x2* matrix1, const BGC_FP64_Matrix2x2* matrix2)
{
sum->r1c1 = matrix1->r1c1 + matrix2->r1c1;
sum->r1c2 = matrix1->r1c2 + matrix2->r1c2;
sum->r2c1 = matrix1->r2c1 + matrix2->r2c1;
sum->r2c2 = matrix1->r2c2 + matrix2->r2c2;
}
// ================= Add scaled ================= //
inline void bgc_fp32_matrix2x2_add_scaled(BGC_FP32_Matrix2x2* sum, const BGC_FP32_Matrix2x2* basic_matrix, const BGC_FP32_Matrix2x2* scalable_matrix, const float scale)
{
sum->r1c1 = basic_matrix->r1c1 + scalable_matrix->r1c1 * scale;
sum->r1c2 = basic_matrix->r1c2 + scalable_matrix->r1c2 * scale;
sum->r2c1 = basic_matrix->r2c1 + scalable_matrix->r2c1 * scale;
sum->r2c2 = basic_matrix->r2c2 + scalable_matrix->r2c2 * scale;
}
inline void bgc_fp64_matrix2x2_add_scaled(BGC_FP64_Matrix2x2* sum, const BGC_FP64_Matrix2x2* basic_matrix, const BGC_FP64_Matrix2x2* scalable_matrix, const double scale)
{
sum->r1c1 = basic_matrix->r1c1 + scalable_matrix->r1c1 * scale;
sum->r1c2 = basic_matrix->r1c2 + scalable_matrix->r1c2 * scale;
sum->r2c1 = basic_matrix->r2c1 + scalable_matrix->r2c1 * scale;
sum->r2c2 = basic_matrix->r2c2 + scalable_matrix->r2c2 * scale;
}
// ================== Subtract ================== //
inline void bgc_fp32_matrix2x2_subtract(BGC_FP32_Matrix2x2* difference, const BGC_FP32_Matrix2x2* minuend, const BGC_FP32_Matrix2x2* subtrahend)
{
difference->r1c1 = minuend->r1c1 - subtrahend->r1c1;
difference->r1c2 = minuend->r1c2 - subtrahend->r1c2;
difference->r2c1 = minuend->r2c1 - subtrahend->r2c1;
difference->r2c2 = minuend->r2c2 - subtrahend->r2c2;
}
inline void bgc_fp64_matrix2x2_subtract(BGC_FP64_Matrix2x2* difference, const BGC_FP64_Matrix2x2* minuend, const BGC_FP64_Matrix2x2* subtrahend)
{
difference->r1c1 = minuend->r1c1 - subtrahend->r1c1;
difference->r1c2 = minuend->r1c2 - subtrahend->r1c2;
difference->r2c1 = minuend->r2c1 - subtrahend->r2c1;
difference->r2c2 = minuend->r2c2 - subtrahend->r2c2;
}
// ================== Multiply ================== //
inline void bgc_fp32_matrix2x2_multiply(BGC_FP32_Matrix2x2* product, const BGC_FP32_Matrix2x2* multiplicand, const float multiplier)
{
product->r1c1 = multiplicand->r1c1 * multiplier;
product->r1c2 = multiplicand->r1c2 * multiplier;
product->r2c1 = multiplicand->r2c1 * multiplier;
product->r2c2 = multiplicand->r2c2 * multiplier;
}
inline void bgc_fp64_matrix2x2_multiply(BGC_FP64_Matrix2x2* product, const BGC_FP64_Matrix2x2* multiplicand, const double multiplier)
{
product->r1c1 = multiplicand->r1c1 * multiplier;
product->r1c2 = multiplicand->r1c2 * multiplier;
product->r2c1 = multiplicand->r2c1 * multiplier;
product->r2c2 = multiplicand->r2c2 * multiplier;
}
// =================== Divide =================== //
inline void bgc_fp32_matrix2x2_divide(BGC_FP32_Matrix2x2* quotient, const BGC_FP32_Matrix2x2* dividend, const float divisor)
{
bgc_fp32_matrix2x2_multiply(quotient, dividend, 1.0f / divisor);
}
inline void bgc_fp64_matrix2x2_divide(BGC_FP64_Matrix2x2* quotient, const BGC_FP64_Matrix2x2* dividend, const double divisor)
{
bgc_fp64_matrix2x2_multiply(quotient, dividend, 1.0 / divisor);
}
// ================ Interpolate ================= //
inline void bgc_fp32_matrix2x2_interpolate(BGC_FP32_Matrix2x2* interpolation, const BGC_FP32_Matrix2x2* first, const BGC_FP32_Matrix2x2* second, const float phase)
{
const float counter_phase = 1.0f - phase;
interpolation->r1c1 = first->r1c1 * counter_phase + second->r1c1 * phase;
interpolation->r1c2 = first->r1c2 * counter_phase + second->r1c2 * phase;
interpolation->r2c1 = first->r2c1 * counter_phase + second->r2c1 * phase;
interpolation->r2c2 = first->r2c2 * counter_phase + second->r2c2 * phase;
}
inline void bgc_fp64_matrix2x2_interpolate(BGC_FP64_Matrix2x2* interpolation, const BGC_FP64_Matrix2x2* first, const BGC_FP64_Matrix2x2* second, const double phase)
{
const double counter_phase = 1.0 - phase;
interpolation->r1c1 = first->r1c1 * counter_phase + second->r1c1 * phase;
interpolation->r1c2 = first->r1c2 * counter_phase + second->r1c2 * phase;
interpolation->r2c1 = first->r2c1 * counter_phase + second->r2c1 * phase;
interpolation->r2c2 = first->r2c2 * counter_phase + second->r2c2 * phase;
}
// ============ Right Vector Product ============ //
inline void bgc_fp32_multiply_matrix2x2_by_vector2(BGC_FP32_Vector2* product, const BGC_FP32_Matrix2x2* matrix, const BGC_FP32_Vector2* vector)
{
const float x1 = matrix->r1c1 * vector->x1 + matrix->r1c2 * vector->x2;
const float x2 = matrix->r2c1 * vector->x1 + matrix->r2c2 * vector->x2;
product->x1 = x1;
product->x2 = x2;
}
inline void bgc_fp64_multiply_matrix2x2_by_vector2(BGC_FP64_Vector2* product, const BGC_FP64_Matrix2x2* matrix, const BGC_FP64_Vector2* vector)
{
const double x1 = matrix->r1c1 * vector->x1 + matrix->r1c2 * vector->x2;
const double x2 = matrix->r2c1 * vector->x1 + matrix->r2c2 * vector->x2;
product->x1 = x1;
product->x2 = x2;
}
// ============ Left Vector Product ============= //
inline void bgc_fp32_multiply_vector2_by_matrix2x2(BGC_FP32_Vector2* product, const BGC_FP32_Vector2* vector, const BGC_FP32_Matrix2x2* matrix)
{
const float x1 = vector->x1 * matrix->r1c1 + vector->x2 * matrix->r2c1;
const float x2 = vector->x1 * matrix->r1c2 + vector->x2 * matrix->r2c2;
product->x1 = x1;
product->x2 = x2;
}
inline void bgc_fp64_multiply_vector2_by_matrix2x2(BGC_FP64_Vector2* product, const BGC_FP64_Vector2* vector, const BGC_FP64_Matrix2x2* matrix)
{
const double x1 = vector->x1 * matrix->r1c1 + vector->x2 * matrix->r2c1;
const double x2 = vector->x1 * matrix->r1c2 + vector->x2 * matrix->r2c2;
product->x1 = x1;
product->x2 = x2;
}
#endif