bgc-c/basic-geometry/quaternion.h

618 lines
22 KiB
C

#ifndef _BGC_QUATERNION_H_
#define _BGC_QUATERNION_H_
#include <math.h>
#include "utilities.h"
#include "angle.h"
#include "matrix3x3.h"
typedef struct {
float s0, x1, x2, x3;
} BgcQuaternionFP32;
typedef struct {
double s0, x1, x2, x3;
} BgcQuaternionFP64;
// ==================== Reset =================== //
inline void bgc_quaternion_reset_fp32(BgcQuaternionFP32 * quaternion)
{
quaternion->s0 = 0.0f;
quaternion->x1 = 0.0f;
quaternion->x2 = 0.0f;
quaternion->x3 = 0.0f;
}
inline void bgc_quaternion_reset_fp64(BgcQuaternionFP64 * quaternion)
{
quaternion->s0 = 0.0;
quaternion->x1 = 0.0;
quaternion->x2 = 0.0;
quaternion->x3 = 0.0;
}
// ================== Set Unit ================== //
inline void bgc_quaternion_set_to_identity_fp32(BgcQuaternionFP32 * quaternion)
{
quaternion->s0 = 1.0f;
quaternion->x1 = 0.0f;
quaternion->x2 = 0.0f;
quaternion->x3 = 0.0f;
}
inline void bgc_quaternion_set_to_identity_fp64(BgcQuaternionFP64 * quaternion)
{
quaternion->s0 = 1.0;
quaternion->x1 = 0.0;
quaternion->x2 = 0.0;
quaternion->x3 = 0.0;
}
// ==================== Set ===================== //
inline void bgc_quaternion_set_values_fp32(const float s0, const float x1, const float x2, const float x3, BgcQuaternionFP32 * quaternion)
{
quaternion->s0 = s0;
quaternion->x1 = x1;
quaternion->x2 = x2;
quaternion->x3 = x3;
}
inline void bgc_quaternion_set_values_fp64(const double s0, const double x1, const double x2, const double x3, BgcQuaternionFP64 * quaternion)
{
quaternion->s0 = s0;
quaternion->x1 = x1;
quaternion->x2 = x2;
quaternion->x3 = x3;
}
// ============= Get Square Modulus ============= //
inline float bgc_quaternion_get_square_modulus_fp32(const BgcQuaternionFP32* quaternion)
{
return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3);
}
inline double bgc_quaternion_get_square_modulus_fp64(const BgcQuaternionFP64* quaternion)
{
return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3);
}
// ================ Get Modulus ================= //
inline float bgc_quaternion_get_modulus_fp32(const BgcQuaternionFP32* quaternion)
{
return sqrtf(bgc_quaternion_get_square_modulus_fp32(quaternion));
}
inline double bgc_quaternion_get_modulus_fp64(const BgcQuaternionFP64* quaternion)
{
return sqrt(bgc_quaternion_get_square_modulus_fp64(quaternion));
}
// ================== Is Zero =================== //
inline int bgc_quaternion_is_zero_fp32(const BgcQuaternionFP32* quaternion)
{
return bgc_quaternion_get_square_modulus_fp32(quaternion) <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_quaternion_is_zero_fp64(const BgcQuaternionFP64* quaternion)
{
return bgc_quaternion_get_square_modulus_fp64(quaternion) <= BGC_SQUARE_EPSYLON_FP64;
}
// ================== Is Unit =================== //
inline int bgc_quaternion_is_unit_fp32(const BgcQuaternionFP32* quaternion)
{
return bgc_is_sqare_unit_fp32(bgc_quaternion_get_square_modulus_fp32(quaternion));
}
inline int bgc_quaternion_is_unit_fp64(const BgcQuaternionFP64* quaternion)
{
return bgc_is_sqare_unit_fp64(bgc_quaternion_get_square_modulus_fp64(quaternion));
}
// ==================== Copy ==================== //
inline void bgc_quaternion_copy_fp32(const BgcQuaternionFP32* from, BgcQuaternionFP32* to)
{
to->s0 = from->s0;
to->x1 = from->x1;
to->x2 = from->x2;
to->x3 = from->x3;
}
inline void bgc_quaternion_copy_fp64(const BgcQuaternionFP64* from, BgcQuaternionFP64* to)
{
to->s0 = from->s0;
to->x1 = from->x1;
to->x2 = from->x2;
to->x3 = from->x3;
}
// ==================== Swap ==================== //
inline void bgc_quaternion_swap_fp32(BgcQuaternionFP32* quarternion1, BgcQuaternionFP32* quarternion2)
{
const float s0 = quarternion2->s0;
const float x1 = quarternion2->x1;
const float x2 = quarternion2->x2;
const float x3 = quarternion2->x3;
quarternion2->s0 = quarternion1->s0;
quarternion2->x1 = quarternion1->x1;
quarternion2->x2 = quarternion1->x2;
quarternion2->x3 = quarternion1->x3;
quarternion1->s0 = s0;
quarternion1->x1 = x1;
quarternion1->x2 = x2;
quarternion1->x3 = x3;
}
inline void bgc_quaternion_swap_fp64(BgcQuaternionFP64* quarternion1, BgcQuaternionFP64* quarternion2)
{
const double s0 = quarternion2->s0;
const double x1 = quarternion2->x1;
const double x2 = quarternion2->x2;
const double x3 = quarternion2->x3;
quarternion2->s0 = quarternion1->s0;
quarternion2->x1 = quarternion1->x1;
quarternion2->x2 = quarternion1->x2;
quarternion2->x3 = quarternion1->x3;
quarternion1->s0 = s0;
quarternion1->x1 = x1;
quarternion1->x2 = x2;
quarternion1->x3 = x3;
}
// ================== Convert =================== //
inline void bgc_quaternion_convert_fp64_to_fp32(const BgcQuaternionFP64* quaternion, BgcQuaternionFP32* result)
{
result->s0 = (float) quaternion->s0;
result->x1 = (float) quaternion->x1;
result->x2 = (float) quaternion->x2;
result->x3 = (float) quaternion->x3;
}
inline void bgc_quaternion_convert_fp32_to_fp64(const BgcQuaternionFP32* quaternion, BgcQuaternionFP64* result)
{
result->s0 = quaternion->s0;
result->x1 = quaternion->x1;
result->x2 = quaternion->x2;
result->x3 = quaternion->x3;
}
// ================= Conjugate ================== //
inline void bgc_quaternion_conjugate_fp32(BgcQuaternionFP32* quaternion)
{
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
inline void bgc_quaternion_conjugate_fp64(BgcQuaternionFP64* quaternion)
{
quaternion->x1 = -quaternion->x1;
quaternion->x2 = -quaternion->x2;
quaternion->x3 = -quaternion->x3;
}
// ================= Normalize ================== //
inline int bgc_quaternion_normalize_fp32(BgcQuaternionFP32* quaternion)
{
const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
bgc_quaternion_reset_fp32(quaternion);
return 0;
}
const float multiplier = sqrtf(1.0f / square_modulus);
quaternion->s0 *= multiplier;
quaternion->x1 *= multiplier;
quaternion->x2 *= multiplier;
quaternion->x3 *= multiplier;
return 1;
}
inline int bgc_quaternion_normalize_fp64(BgcQuaternionFP64* quaternion)
{
const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
bgc_quaternion_reset_fp64(quaternion);
return 0;
}
const double multiplier = sqrt(1.0 / square_modulus);
quaternion->s0 *= multiplier;
quaternion->x1 *= multiplier;
quaternion->x2 *= multiplier;
quaternion->x3 *= multiplier;
return 1;
}
// =============== Make Conjugate =============== //
inline void bgc_quaternion_make_conjugate_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* conjugate)
{
conjugate->s0 = quaternion->s0;
conjugate->x1 = -quaternion->x1;
conjugate->x2 = -quaternion->x2;
conjugate->x3 = -quaternion->x3;
}
inline void bgc_quaternion_make_conjugate_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* conjugate)
{
conjugate->s0 = quaternion->s0;
conjugate->x1 = -quaternion->x1;
conjugate->x2 = -quaternion->x2;
conjugate->x3 = -quaternion->x3;
}
// ============== Make Normalized =============== //
inline int bgc_quaternion_make_normalized_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* normalized)
{
bgc_quaternion_copy_fp32(quaternion, normalized);
return bgc_quaternion_normalize_fp32(normalized);
}
inline int bgc_quaternion_make_normalized_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* normalized)
{
bgc_quaternion_copy_fp64(quaternion, normalized);
return bgc_quaternion_normalize_fp64(normalized);
}
// ================== Product =================== //
inline void bgc_quaternion_make_product_fp32(const BgcQuaternionFP32* left, const BgcQuaternionFP32* right, BgcQuaternionFP32* product)
{
const float s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const float x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const float x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const float x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
inline void bgc_quaternion_make_product_fp64(const BgcQuaternionFP64* left, const BgcQuaternionFP64* right, BgcQuaternionFP64* product)
{
const double s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3);
const double x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3);
const double x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1);
const double x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2);
product->s0 = s0;
product->x1 = x1;
product->x2 = x2;
product->x3 = x3;
}
// ============ Make Rotation Matrix ============ //
inline void bgc_quaternion_make_rotation_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation)
{
const float s0s0 = quaternion->s0 * quaternion->s0;
const float x1x1 = quaternion->x1 * quaternion->x1;
const float x2x2 = quaternion->x2 * quaternion->x2;
const float x3x3 = quaternion->x3 * quaternion->x3;
const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp32(rotation);
return;
}
const float corrector1 = 1.0f / square_modulus;
const float s0x1 = quaternion->s0 * quaternion->x1;
const float s0x2 = quaternion->s0 * quaternion->x2;
const float s0x3 = quaternion->s0 * quaternion->x3;
const float x1x2 = quaternion->x1 * quaternion->x2;
const float x1x3 = quaternion->x1 * quaternion->x3;
const float x2x3 = quaternion->x2 * quaternion->x3;
const float corrector2 = 2.0f * corrector1;
rotation->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
rotation->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
rotation->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
rotation->r1c2 = corrector2 * (x1x2 - s0x3);
rotation->r2c3 = corrector2 * (x2x3 - s0x1);
rotation->r3c1 = corrector2 * (x1x3 - s0x2);
rotation->r2c1 = corrector2 * (x1x2 + s0x3);
rotation->r3c2 = corrector2 * (x2x3 + s0x1);
rotation->r1c3 = corrector2 * (x1x3 + s0x2);
}
inline void bgc_quaternion_make_rotation_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation)
{
const double s0s0 = quaternion->s0 * quaternion->s0;
const double x1x1 = quaternion->x1 * quaternion->x1;
const double x2x2 = quaternion->x2 * quaternion->x2;
const double x3x3 = quaternion->x3 * quaternion->x3;
const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp64(rotation);
return;
}
const double corrector1 = 1.0f / square_modulus;
const double s0x1 = quaternion->s0 * quaternion->x1;
const double s0x2 = quaternion->s0 * quaternion->x2;
const double s0x3 = quaternion->s0 * quaternion->x3;
const double x1x2 = quaternion->x1 * quaternion->x2;
const double x1x3 = quaternion->x1 * quaternion->x3;
const double x2x3 = quaternion->x2 * quaternion->x3;
const double corrector2 = 2.0f * corrector1;
rotation->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
rotation->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
rotation->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
rotation->r1c2 = corrector2 * (x1x2 - s0x3);
rotation->r2c3 = corrector2 * (x2x3 - s0x1);
rotation->r3c1 = corrector2 * (x1x3 - s0x2);
rotation->r2c1 = corrector2 * (x1x2 + s0x3);
rotation->r3c2 = corrector2 * (x2x3 + s0x1);
rotation->r1c3 = corrector2 * (x1x3 + s0x2);
}
// ============ Make Reverse Matrix ============= //
inline void bgc_quaternion_make_reverse_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* reverse)
{
const float s0s0 = quaternion->s0 * quaternion->s0;
const float x1x1 = quaternion->x1 * quaternion->x1;
const float x2x2 = quaternion->x2 * quaternion->x2;
const float x3x3 = quaternion->x3 * quaternion->x3;
const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp32(reverse);
return;
}
const float corrector1 = 1.0f / square_modulus;
const float s0x1 = quaternion->s0 * quaternion->x1;
const float s0x2 = quaternion->s0 * quaternion->x2;
const float s0x3 = quaternion->s0 * quaternion->x3;
const float x1x2 = quaternion->x1 * quaternion->x2;
const float x1x3 = quaternion->x1 * quaternion->x3;
const float x2x3 = quaternion->x2 * quaternion->x3;
const float corrector2 = 2.0f * corrector1;
reverse->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
reverse->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
reverse->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
reverse->r1c2 = corrector2 * (x1x2 + s0x3);
reverse->r2c3 = corrector2 * (x2x3 + s0x1);
reverse->r3c1 = corrector2 * (x1x3 + s0x2);
reverse->r2c1 = corrector2 * (x1x2 - s0x3);
reverse->r3c2 = corrector2 * (x2x3 - s0x1);
reverse->r1c3 = corrector2 * (x1x3 - s0x2);
}
inline void bgc_quaternion_make_reverse_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* reverse)
{
const double s0s0 = quaternion->s0 * quaternion->s0;
const double x1x1 = quaternion->x1 * quaternion->x1;
const double x2x2 = quaternion->x2 * quaternion->x2;
const double x3x3 = quaternion->x3 * quaternion->x3;
const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus)
{
bgc_matrix3x3_set_to_identity_fp64(reverse);
return;
}
const double corrector1 = 1.0f / square_modulus;
const double s0x1 = quaternion->s0 * quaternion->x1;
const double s0x2 = quaternion->s0 * quaternion->x2;
const double s0x3 = quaternion->s0 * quaternion->x3;
const double x1x2 = quaternion->x1 * quaternion->x2;
const double x1x3 = quaternion->x1 * quaternion->x3;
const double x2x3 = quaternion->x2 * quaternion->x3;
const double corrector2 = 2.0f * corrector1;
reverse->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3));
reverse->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3));
reverse->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2));
reverse->r1c2 = corrector2 * (x1x2 + s0x3);
reverse->r2c3 = corrector2 * (x2x3 + s0x1);
reverse->r3c1 = corrector2 * (x1x3 + s0x2);
reverse->r2c1 = corrector2 * (x1x2 - s0x3);
reverse->r3c2 = corrector2 * (x2x3 - s0x1);
reverse->r1c3 = corrector2 * (x1x3 - s0x2);
}
// ==================== Add ===================== //
inline void bgc_quaternion_add_fp32(const BgcQuaternionFP32 * quaternion1, const BgcQuaternionFP32 * quaternion2, BgcQuaternionFP32 * sum)
{
sum->s0 = quaternion1->s0 + quaternion2->s0;
sum->x1 = quaternion1->x1 + quaternion2->x1;
sum->x2 = quaternion1->x2 + quaternion2->x2;
sum->x3 = quaternion1->x3 + quaternion2->x3;
}
inline void bgc_quaternion_add_fp64(const BgcQuaternionFP64 * quaternion1, const BgcQuaternionFP64 * quaternion2, BgcQuaternionFP64 * sum)
{
sum->s0 = quaternion1->s0 + quaternion2->s0;
sum->x1 = quaternion1->x1 + quaternion2->x1;
sum->x2 = quaternion1->x2 + quaternion2->x2;
sum->x3 = quaternion1->x3 + quaternion2->x3;
}
// ================= Add Scaled ================= //
inline void bgc_quaternion_add_scaled_fp32(const BgcQuaternionFP32 * basic_quaternion, const BgcQuaternionFP32 * scalable_quaternion, const float scale, BgcQuaternionFP32 * sum)
{
sum->s0 = basic_quaternion->s0 + scalable_quaternion->s0 * scale;
sum->x1 = basic_quaternion->x1 + scalable_quaternion->x1 * scale;
sum->x2 = basic_quaternion->x2 + scalable_quaternion->x2 * scale;
sum->x3 = basic_quaternion->x3 + scalable_quaternion->x3 * scale;
}
inline void bgc_quaternion_add_scaled_fp64(const BgcQuaternionFP64 * basic_quaternion, const BgcQuaternionFP64 * scalable_quaternion, const double scale, BgcQuaternionFP64 * sum)
{
sum->s0 = basic_quaternion->s0 + scalable_quaternion->s0 * scale;
sum->x1 = basic_quaternion->x1 + scalable_quaternion->x1 * scale;
sum->x2 = basic_quaternion->x2 + scalable_quaternion->x2 * scale;
sum->x3 = basic_quaternion->x3 + scalable_quaternion->x3 * scale;
}
// ================== Subtract ================== //
inline void bgc_quaternion_subtract_fp32(const BgcQuaternionFP32 * minuend, const BgcQuaternionFP32 * subtrahend, BgcQuaternionFP32 * difference)
{
difference->s0 = minuend->s0 - subtrahend->s0;
difference->x1 = minuend->x1 - subtrahend->x1;
difference->x2 = minuend->x2 - subtrahend->x2;
difference->x3 = minuend->x3 - subtrahend->x3;
}
inline void bgc_quaternion_subtract_fp64(const BgcQuaternionFP64 * minuend, const BgcQuaternionFP64 * subtrahend, BgcQuaternionFP64 * difference)
{
difference->s0 = minuend->s0 - subtrahend->s0;
difference->x1 = minuend->x1 - subtrahend->x1;
difference->x2 = minuend->x2 - subtrahend->x2;
difference->x3 = minuend->x3 - subtrahend->x3;
}
// ============== Subtract scaled =============== //
inline void bgc_quaternion_subtract_scaled_fp32(const BgcQuaternionFP32 * basic_quaternion, const BgcQuaternionFP32 * scalable_quaternion, const float scale, BgcQuaternionFP32 * difference)
{
difference->s0 = basic_quaternion->s0 - scalable_quaternion->s0 * scale;
difference->x1 = basic_quaternion->x1 - scalable_quaternion->x1 * scale;
difference->x2 = basic_quaternion->x2 - scalable_quaternion->x2 * scale;
difference->x3 = basic_quaternion->x3 - scalable_quaternion->x3 * scale;
}
inline void bgc_quaternion_subtract_scaled_fp64(const BgcQuaternionFP64 * basic_quaternion, const BgcQuaternionFP64 * scalable_quaternion, const double scale, BgcQuaternionFP64 * difference)
{
difference->s0 = basic_quaternion->s0 - scalable_quaternion->s0 * scale;
difference->x1 = basic_quaternion->x1 - scalable_quaternion->x1 * scale;
difference->x2 = basic_quaternion->x2 - scalable_quaternion->x2 * scale;
difference->x3 = basic_quaternion->x3 - scalable_quaternion->x3 * scale;
}
// ================== Multiply ================== //
inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* multiplicand, const float multipier, BgcQuaternionFP32* product)
{
product->s0 = multiplicand->s0 * multipier;
product->x1 = multiplicand->x1 * multipier;
product->x2 = multiplicand->x2 * multipier;
product->x3 = multiplicand->x3 * multipier;
}
inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* multiplicand, const double multipier, BgcQuaternionFP64* product)
{
product->s0 = multiplicand->s0 * multipier;
product->x1 = multiplicand->x1 * multipier;
product->x2 = multiplicand->x2 * multipier;
product->x3 = multiplicand->x3 * multipier;
}
// =================== Divide =================== //
inline void bgc_quaternion_divide_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient)
{
bgc_quaternion_multiply_fp32(dividend, 1.0f / divisor, quotient);
}
inline void bgc_quaternion_divide_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient)
{
bgc_quaternion_multiply_fp64(dividend, 1.0 / divisor, quotient);
}
// ================== Are Close ================= //
inline int bgc_quaternion_are_close_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2)
{
const float ds0 = quaternion1->s0 - quaternion2->s0;
const float dx1 = quaternion1->x1 - quaternion2->x1;
const float dx2 = quaternion1->x2 - quaternion2->x2;
const float dx3 = quaternion1->x3 - quaternion2->x3;
const float square_modulus1 = bgc_quaternion_get_square_modulus_fp32(quaternion1);
const float square_modulus2 = bgc_quaternion_get_square_modulus_fp32(quaternion2);
const float square_distance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3);
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32) {
return square_distance <= BGC_SQUARE_EPSYLON_FP32;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
}
inline int bgc_quaternion_are_close_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2)
{
const double ds0 = quaternion1->s0 - quaternion2->s0;
const double dx1 = quaternion1->x1 - quaternion2->x1;
const double dx2 = quaternion1->x2 - quaternion2->x2;
const double dx3 = quaternion1->x3 - quaternion2->x3;
const double square_modulus1 = bgc_quaternion_get_square_modulus_fp64(quaternion1);
const double square_modulus2 = bgc_quaternion_get_square_modulus_fp64(quaternion2);
const double square_distance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3);
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64) {
return square_distance <= BGC_SQUARE_EPSYLON_FP64;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus2;
}
#endif // _BGC_QUATERNION_H_