#include "./versor_combine.h" #include #include "./../../helpers.h" typedef struct { BgcVersorFP32 first, second, result; } _TestVersorTripletFP32; typedef struct { BgcVersorFP64 first, second, result; } _TestVersorTripletFP64; // ==================== FP32 ==================== // static const int _TEST_FP32_VERSOR_TRIPLET_AMOUNT = 5; static const _TestVersorTripletFP32 _TEST_FP32_VERSOR_TRIPLET_LIST[] = { { { 1.0f, 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.0f } }, { { 1.0f, 0.0f, 0.0f, 0.0f }, { -1.0f, 0.0f, 0.0f, 0.0f }, { -1.0f, 0.0f, 0.0f, 0.0f } }, { { 0.182574185835f, 0.36514837167f, 0.54772255751f, 0.73029674334f }, { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.182574185835f, 0.36514837167f, 0.54772255751f, 0.73029674334f } }, { { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.182574185835f, 0.36514837167f, 0.54772255751f, 0.73029674334f }, { 0.182574185835f, 0.36514837167f, 0.54772255751f, 0.73029674334f } }, { { 0.7071067812f, 0.7071067812f, 0.0f, 0.0f }, { 0.7071067812f, 0.0f, 0.0f, 0.7071067812f }, { 0.5f, 0.5f, 0.5f, 0.5f } } }; int test_versor_combine_fp32() { BgcVersorFP32 versor; print_testing_name("bgc_versor_combine_fp32"); for (int i = 0; i < _TEST_FP32_VERSOR_TRIPLET_AMOUNT; i++) { bgc_versor_combine_fp32(&_TEST_FP32_VERSOR_TRIPLET_LIST[i].second, &_TEST_FP32_VERSOR_TRIPLET_LIST[i].first, &versor); if (!bgc_versor_are_close_fp32(&versor, &_TEST_FP32_VERSOR_TRIPLET_LIST[i].result)) { print_testing_failed(); return TEST_FAILED; } } print_testing_success(); return TEST_SUCCESS; } // ==================== FP64 ==================== // static const int _TEST_FP64_VERSOR_TRIPLET_AMOUNT = 5; static const _TestVersorTripletFP64 _TEST_FP64_VERSOR_TRIPLET_LIST[] = { { { 1.0, 0.0, 0.0, 0.0 }, { 1.0, 0.0, 0.0, 0.0 }, { 1.0, 0.0, 0.0, 0.0 } }, { { 1.0, 0.0, 0.0, 0.0 }, { -1.0, 0.0, 0.0, 0.0 }, { -1.0, 0.0, 0.0, 0.0 } }, { { 0.1825741858350553712, 0.3651483716701107423, 0.5477225575051661135, 0.7302967433402214846 }, { 1.0, 0.0, 0.0, 0.0 }, { 0.1825741858350553712, 0.3651483716701107423, 0.5477225575051661135, 0.7302967433402214846 } }, { { 1.0, 0.0, 0.0, 0.0 }, { 0.1825741858350553712, 0.3651483716701107423, 0.5477225575051661135, 0.7302967433402214846 }, { 0.1825741858350553712, 0.3651483716701107423, 0.5477225575051661135, 0.7302967433402214846 } }, { { 0.7071067811865475, 0.7071067811865475, 0.0, 0.0 }, { 0.7071067811865475, 0.0, 0.0, 0.7071067811865475 }, { 0.5, 0.5, 0.5, 0.5 } } }; int test_versor_combine_fp64() { BgcVersorFP64 versor; print_testing_name("bgc_versor_combine_fp64"); for (int i = 0; i < _TEST_FP64_VERSOR_TRIPLET_AMOUNT; i++) { bgc_versor_combine_fp64(&_TEST_FP64_VERSOR_TRIPLET_LIST[i].second, &_TEST_FP64_VERSOR_TRIPLET_LIST[i].first, &versor); if (!bgc_versor_are_close_fp64(&versor, &_TEST_FP64_VERSOR_TRIPLET_LIST[i].result)) { print_testing_failed(); return TEST_FAILED; } } print_testing_success(); return TEST_SUCCESS; } int test_versor_combine() { if (test_versor_combine_fp32() != TEST_SUCCESS) { return TEST_FAILED; } if (test_versor_combine_fp64() != TEST_SUCCESS) { return TEST_FAILED; } return TEST_SUCCESS; }