#ifndef _GEOMETRY_VECTOR2_H_ #define _GEOMETRY_VECTOR2_H_ #include "basis.h" #include "angle.h" #include typedef struct { float x1, x2; } BgFP32Vector2; typedef struct { double x1, x2; } BgFP64Vector2; // =================== Reset ==================== // static inline void bg_fp32_vector2_reset(BgFP32Vector2* vector) { vector->x1 = 0.0f; vector->x2 = 0.0f; } static inline void bg_fp64_vector2_reset(BgFP64Vector2* vector) { vector->x1 = 0.0; vector->x2 = 0.0; } // ==================== Set ===================== // static inline void bg_fp32_vector2_set_values(const float x1, const float x2, BgFP32Vector2* to) { to->x1 = x1; to->x2 = x2; } static inline void bg_fp64_vector2_set_values(const double x1, const double x2, BgFP64Vector2* to) { to->x1 = x1; to->x2 = x2; } // ==================== Copy ==================== // static inline void bg_fp32_vector2_copy(const BgFP32Vector2* from, BgFP32Vector2* to) { to->x1 = from->x1; to->x2 = from->x2; } static inline void bg_fp64_vector2_copy(const BgFP64Vector2* from, BgFP64Vector2* to) { to->x1 = from->x1; to->x2 = from->x2; } // ==================== Swap ==================== // static inline void bg_fp32_vector2_swap(BgFP32Vector2* vector1, BgFP32Vector2* vector2) { const float x1 = vector2->x1; const float x2 = vector2->x2; vector2->x1 = vector1->x1; vector2->x2 = vector1->x2; vector1->x1 = x1; vector1->x2 = x2; } static inline void bg_fp64_vector2_swap(BgFP64Vector2* vector1, BgFP64Vector2* vector2) { const double x1 = vector2->x1; const double x2 = vector2->x2; vector2->x1 = vector1->x1; vector2->x2 = vector1->x2; vector1->x1 = x1; vector1->x2 = x2; } // ============= Copy to twin type ============== // static inline void bg_fp32_vector2_set_from_fp64(const BgFP64Vector2* from, BgFP32Vector2* to) { to->x1 = (float)from->x1; to->x2 = (float)from->x2; } static inline void bg_fp64_vector2_set_from_fp32(const BgFP32Vector2* from, BgFP64Vector2* to) { to->x1 = from->x1; to->x2 = from->x2; } // =================== Reverse ================== // static inline void bg_fp32_vector2_set_reverse(const BgFP32Vector2* from, BgFP32Vector2* to) { to->x1 = -from->x1; to->x2 = -from->x2; } static inline void bg_fp64_vector2_set_reverse(const BgFP64Vector2* from, BgFP64Vector2* to) { to->x1 = -from->x1; to->x2 = -from->x2; } // ============= Reverse twin type ============== // static inline void bg_fp32_vector2_set_reverse_fp64(const BgFP64Vector2* from, BgFP32Vector2* to) { to->x1 = (float) -from->x1; to->x2 = (float) -from->x2; } static inline void bg_fp64_vector2_set_reverse_fp32(const BgFP32Vector2* from, BgFP64Vector2* to) { to->x1 = -from->x1; to->x2 = -from->x2; } // =================== Module =================== // static inline float bg_fp32_vector2_get_square_modulus(const BgFP32Vector2* vector) { return vector->x1 * vector->x1 + vector->x2 * vector->x2; } static inline double bg_fp64_vector2_get_square_modulus(const BgFP64Vector2* vector) { return vector->x1 * vector->x1 + vector->x2 * vector->x2; } static inline float bg_fp32_vector2_get_modulus(const BgFP32Vector2* vector) { return sqrtf(bg_fp32_vector2_get_square_modulus(vector)); } static inline double bg_fp64_vector2_get_modulus(const BgFP64Vector2* vector) { return sqrt(bg_fp64_vector2_get_square_modulus(vector)); } // ================= Comparison ================= // static inline int bg_fp32_vector2_is_zero(const BgFP32Vector2* vector) { return bg_fp32_vector2_get_square_modulus(vector) <= BG_FP32_SQUARE_EPSYLON; } static inline int bg_fp64_vector2_is_zero(const BgFP64Vector2* vector) { return bg_fp64_vector2_get_square_modulus(vector) <= BG_FP64_SQUARE_EPSYLON; } static inline int bg_fp32_vector2_is_unit(const BgFP32Vector2* vector) { const float square_modulus = bg_fp32_vector2_get_square_modulus(vector); return 1.0f - BG_FP32_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + BG_FP32_TWO_EPSYLON; } static inline int bg_fp64_vector2_is_unit(const BgFP64Vector2* vector) { const double square_modulus = bg_fp64_vector2_get_square_modulus(vector); return 1.0f - BG_FP64_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + BG_FP64_TWO_EPSYLON; } // ==================== Add ===================== // static inline void bg_fp32_vector2_add(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2, BgFP32Vector2* sum) { sum->x1 = vector1->x1 + vector2->x1; sum->x2 = vector1->x2 + vector2->x2; } static inline void bg_fp64_vector2_add(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2, BgFP64Vector2* sum) { sum->x1 = vector1->x1 + vector2->x1; sum->x2 = vector1->x2 + vector2->x2; } // ================ Subtraction ================= // static inline void bg_fp32_vector2_subtract(const BgFP32Vector2* minuend, const BgFP32Vector2* subtrahend, BgFP32Vector2* difference) { difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; } static inline void bg_fp64_vector2_subtract(const BgFP64Vector2* minuend, const BgFP64Vector2* subtrahend, BgFP64Vector2* difference) { difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; } // =============== Multiplication =============== // static inline void bg_fp32_vector2_multiply(const BgFP32Vector2* multiplicand, const float multiplier, BgFP32Vector2* product) { product->x1 = multiplicand->x1 * multiplier; product->x2 = multiplicand->x2 * multiplier; } static inline void bg_fp64_vector2_multiply(const BgFP64Vector2* multiplicand, const double multiplier, BgFP64Vector2* product) { product->x1 = multiplicand->x1 * multiplier; product->x2 = multiplicand->x2 * multiplier; } // ================== Division ================== // static inline void bg_fp32_vector2_divide(const BgFP32Vector2* dividend, const float divisor, BgFP32Vector2* quotient) { bg_fp32_vector2_multiply(dividend, 1.0f / divisor, quotient); } static inline void bg_fp64_vector2_divide(const BgFP64Vector2* dividend, const double divisor, BgFP64Vector2* quotient) { bg_fp64_vector2_multiply(dividend, 1.0 / divisor, quotient); } // ================ Append scaled =============== // static inline void bg_fp32_vector2_append_scaled(BgFP32Vector2* basic_vector, const BgFP32Vector2* scalable_vector, const float scale) { basic_vector->x1 += scalable_vector->x1 * scale; basic_vector->x2 += scalable_vector->x2 * scale; } static inline void bg_fp64_vector2_append_scaled(BgFP64Vector2* basic_vector, const BgFP64Vector2* scalable_vector, const double scale) { basic_vector->x1 += scalable_vector->x1 * scale; basic_vector->x2 += scalable_vector->x2 * scale; } // ================== Average2 ================== // static inline void bg_fp32_vector2_get_mean2(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2, BgFP32Vector2* result) { result->x1 = (vector1->x1 + vector2->x1) * 0.5f; result->x2 = (vector1->x2 + vector2->x2) * 0.5f; } static inline void bg_fp64_vector2_get_mean2(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2, BgFP64Vector2* result) { result->x1 = (vector1->x1 + vector2->x1) * 0.5; result->x2 = (vector1->x2 + vector2->x2) * 0.5; } // ================== Average3 ================== // static inline void bg_fp32_vector2_get_mean3(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2, const BgFP32Vector2* vector3, BgFP32Vector2* result) { result->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BG_FP32_ONE_THIRD; result->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BG_FP32_ONE_THIRD; } static inline void bg_fp64_vector2_get_mean3(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2, const BgFP64Vector2* vector3, BgFP64Vector2* result) { result->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BG_FP64_ONE_THIRD; result->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BG_FP64_ONE_THIRD; } // =============== Scalar Product =============== // static inline float bg_fp32_vector2_scalar_product(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2) { return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2; } static inline double bg_fp64_vector2_scalar_product(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2) { return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2; } // =============== Cross Product ================ // static inline float bg_fp32_vector2_cross_product(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2) { return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1; } static inline double bg_fp64_vector2_cross_product(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2) { return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1; } // ============== Complex Product =============== // static inline void bg_fp32_vector2_complex_product(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2, BgFP32Vector2* result) { const float x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2; const float x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1; result->x1 = x1; result->x2 = x2; } static inline void bg_fp64_vector2_complex_product(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2, BgFP64Vector2* result) { const double x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2; const double x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1; result->x1 = x1; result->x2 = x2; } // =============== Normalization ================ // static inline int bg_fp32_vector2_normalize(BgFP32Vector2* vector) { const float square_modulus = bg_fp32_vector2_get_square_modulus(vector); if (1.0f - BG_FP32_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + BG_FP32_TWO_EPSYLON) { return 1; } if (square_modulus <= BG_FP32_SQUARE_EPSYLON) { bg_fp32_vector2_reset(vector); return 0; } bg_fp32_vector2_multiply(vector, sqrtf(1.0f / square_modulus), vector); return 1; } static inline int bg_fp64_vector2_normalize(BgFP64Vector2* vector) { const double square_modulus = bg_fp64_vector2_get_square_modulus(vector); if (1.0 - BG_FP64_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0 + BG_FP64_TWO_EPSYLON) { return 1; } if (square_modulus <= BG_FP64_SQUARE_EPSYLON) { bg_fp64_vector2_reset(vector); return 0; } bg_fp64_vector2_multiply(vector, sqrt(1.0 / square_modulus), vector); return 1; } // =============== Get Normalized =============== // static inline int bg_fp32_vector2_set_normalized(const BgFP32Vector2* vector, BgFP32Vector2* result) { bg_fp32_vector2_copy(vector, result); return bg_fp32_vector2_normalize(result); } static inline int bg_fp64_vector2_set_normalized(const BgFP64Vector2* vector, BgFP64Vector2* result) { bg_fp64_vector2_copy(vector, result); return bg_fp64_vector2_normalize(result); } // =================== Angle ==================== // float bg_fp32_vector2_get_angle(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2, const angle_unit_t unit); double bg_fp64_vector2_get_angle(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2, const angle_unit_t unit); // =============== Square Distance ============== // static inline float bg_fp32_vector2_get_square_distance(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2) { const float dx1 = (vector1->x1 - vector2->x1); const float dx2 = (vector1->x2 - vector2->x2); return dx1 * dx1 + dx2 * dx2; } static inline double bg_fp64_vector2_get_square_distance(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2) { const double dx1 = (vector1->x1 - vector2->x1); const double dx2 = (vector1->x2 - vector2->x2); return dx1 * dx1 + dx2 * dx2; } // ================== Distance ================== // static inline float bg_fp32_vector2_get_distance(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2) { return sqrtf(bg_fp32_vector2_get_square_distance(vector1, vector2)); } static inline double bg_fp64_vector2_get_distance(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2) { return sqrt(bg_fp64_vector2_get_square_distance(vector1, vector2)); } // ================== Are Equal ================= // static inline int bg_fp32_vector2_are_equal(const BgFP32Vector2* vector1, const BgFP32Vector2* vector2) { const float square_modulus1 = bg_fp32_vector2_get_square_modulus(vector1); const float square_modulus2 = bg_fp32_vector2_get_square_modulus(vector2); const float square_modulus3 = bg_fp32_vector2_get_square_distance(vector1, vector2); // 2.0f means dimension amount if (square_modulus1 < BG_FP32_EPSYLON_EFFECTIVENESS_LIMIT || square_modulus2 < BG_FP32_EPSYLON_EFFECTIVENESS_LIMIT) { return square_modulus3 < (2.0f * BG_FP32_SQUARE_EPSYLON); } if (square_modulus1 <= square_modulus2) { return square_modulus3 <= (2.0f * BG_FP32_SQUARE_EPSYLON) * square_modulus2; } return square_modulus3 <= (2.0f * BG_FP32_SQUARE_EPSYLON) * square_modulus1; } static inline int bg_fp64_vector2_are_equal(const BgFP64Vector2* vector1, const BgFP64Vector2* vector2) { const double square_modulus1 = bg_fp64_vector2_get_square_modulus(vector1); const double square_modulus2 = bg_fp64_vector2_get_square_modulus(vector2); const double square_modulus3 = bg_fp64_vector2_get_square_distance(vector1, vector2); // 2.0 means dimension amount if (square_modulus1 < BG_FP64_EPSYLON_EFFECTIVENESS_LIMIT || square_modulus2 < BG_FP64_EPSYLON_EFFECTIVENESS_LIMIT) { return square_modulus3 < (2.0 * BG_FP64_SQUARE_EPSYLON); } if (square_modulus1 <= square_modulus2) { return square_modulus3 <= (2.0 * BG_FP64_SQUARE_EPSYLON) * square_modulus2; } return square_modulus3 <= (2.0 * BG_FP64_SQUARE_EPSYLON) * square_modulus1; } #endif