#ifndef _BGC_QUATERNION_H_ #define _BGC_QUATERNION_H_ #include #include "utilities.h" #include "angle.h" #include "matrix3x3.h" typedef struct { float s0, x1, x2, x3; } BGC_FP32_Quaternion; typedef struct { double s0, x1, x2, x3; } BGC_FP64_Quaternion; // ==================== Reset =================== // inline void bgc_fp32_quaternion_reset(BGC_FP32_Quaternion * quaternion) { quaternion->s0 = 0.0f; quaternion->x1 = 0.0f; quaternion->x2 = 0.0f; quaternion->x3 = 0.0f; } inline void bgc_fp64_quaternion_reset(BGC_FP64_Quaternion * quaternion) { quaternion->s0 = 0.0; quaternion->x1 = 0.0; quaternion->x2 = 0.0; quaternion->x3 = 0.0; } // ================= Make Unit ================== // inline void bgc_fp32_quaternion_make_unit(BGC_FP32_Quaternion * quaternion) { quaternion->s0 = 1.0f; quaternion->x1 = 0.0f; quaternion->x2 = 0.0f; quaternion->x3 = 0.0f; } inline void bgc_fp64_quaternion_make_unit(BGC_FP64_Quaternion * quaternion) { quaternion->s0 = 1.0; quaternion->x1 = 0.0; quaternion->x2 = 0.0; quaternion->x3 = 0.0; } // ==================== Set ===================== // inline void bgc_fp32_quaternion_make(const float s0, const float x1, const float x2, const float x3, BGC_FP32_Quaternion * quaternion) { quaternion->s0 = s0; quaternion->x1 = x1; quaternion->x2 = x2; quaternion->x3 = x3; } inline void bgc_fp64_quaternion_make(const double s0, const double x1, const double x2, const double x3, BGC_FP64_Quaternion * quaternion) { quaternion->s0 = s0; quaternion->x1 = x1; quaternion->x2 = x2; quaternion->x3 = x3; } // ============= Get Square Modulus ============= // inline float bgc_fp32_quaternion_get_square_modulus(const BGC_FP32_Quaternion* quaternion) { return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3); } inline double bgc_fp64_quaternion_get_square_modulus(const BGC_FP64_Quaternion* quaternion) { return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3); } // ================ Get Modulus ================= // inline float bgc_fp32_quaternion_get_modulus(const BGC_FP32_Quaternion* quaternion) { return sqrtf(bgc_fp32_quaternion_get_square_modulus(quaternion)); } inline double bgc_fp64_quaternion_get_modulus(const BGC_FP64_Quaternion* quaternion) { return sqrt(bgc_fp64_quaternion_get_square_modulus(quaternion)); } // ================== Is Zero =================== // inline int bgc_fp32_quaternion_is_zero(const BGC_FP32_Quaternion* quaternion) { return bgc_fp32_quaternion_get_square_modulus(quaternion) <= BGC_FP32_SQUARE_EPSYLON; } inline int bgc_fp64_quaternion_is_zero(const BGC_FP64_Quaternion* quaternion) { return bgc_fp64_quaternion_get_square_modulus(quaternion) <= BGC_FP64_SQUARE_EPSYLON; } // ================== Is Unit =================== // inline int bgc_fp32_quaternion_is_unit(const BGC_FP32_Quaternion* quaternion) { return bgc_fp32_is_square_unit(bgc_fp32_quaternion_get_square_modulus(quaternion)); } inline int bgc_fp64_quaternion_is_unit(const BGC_FP64_Quaternion* quaternion) { return bgc_fp64_is_square_unit(bgc_fp64_quaternion_get_square_modulus(quaternion)); } // ==================== Copy ==================== // inline void bgc_fp32_quaternion_copy(const BGC_FP32_Quaternion* source, BGC_FP32_Quaternion* destination) { destination->s0 = source->s0; destination->x1 = source->x1; destination->x2 = source->x2; destination->x3 = source->x3; } inline void bgc_fp64_quaternion_copy(const BGC_FP64_Quaternion* source, BGC_FP64_Quaternion* destination) { destination->s0 = source->s0; destination->x1 = source->x1; destination->x2 = source->x2; destination->x3 = source->x3; } // ==================== Swap ==================== // inline void bgc_fp32_quaternion_swap(BGC_FP32_Quaternion* quarternion1, BGC_FP32_Quaternion* quarternion2) { const float s0 = quarternion2->s0; const float x1 = quarternion2->x1; const float x2 = quarternion2->x2; const float x3 = quarternion2->x3; quarternion2->s0 = quarternion1->s0; quarternion2->x1 = quarternion1->x1; quarternion2->x2 = quarternion1->x2; quarternion2->x3 = quarternion1->x3; quarternion1->s0 = s0; quarternion1->x1 = x1; quarternion1->x2 = x2; quarternion1->x3 = x3; } inline void bgc_fp64_quaternion_swap(BGC_FP64_Quaternion* quarternion1, BGC_FP64_Quaternion* quarternion2) { const double s0 = quarternion2->s0; const double x1 = quarternion2->x1; const double x2 = quarternion2->x2; const double x3 = quarternion2->x3; quarternion2->s0 = quarternion1->s0; quarternion2->x1 = quarternion1->x1; quarternion2->x2 = quarternion1->x2; quarternion2->x3 = quarternion1->x3; quarternion1->s0 = s0; quarternion1->x1 = x1; quarternion1->x2 = x2; quarternion1->x3 = x3; } // ================== Convert =================== // inline void bgc_fp64_quaternion_convert_to_fp32(const BGC_FP64_Quaternion* source, BGC_FP32_Quaternion* destination) { destination->s0 = (float)source->s0; destination->x1 = (float)source->x1; destination->x2 = (float)source->x2; destination->x3 = (float)source->x3; } inline void bgc_fp32_quaternion_convert_to_fp64(const BGC_FP32_Quaternion* source, BGC_FP64_Quaternion* destination) { destination->s0 = source->s0; destination->x1 = source->x1; destination->x2 = source->x2; destination->x3 = source->x3; } // ==================== Add ===================== // inline void bgc_fp32_quaternion_add(const BGC_FP32_Quaternion * quaternion1, const BGC_FP32_Quaternion * quaternion2, BGC_FP32_Quaternion * sum) { sum->s0 = quaternion1->s0 + quaternion2->s0; sum->x1 = quaternion1->x1 + quaternion2->x1; sum->x2 = quaternion1->x2 + quaternion2->x2; sum->x3 = quaternion1->x3 + quaternion2->x3; } inline void bgc_fp64_quaternion_add(const BGC_FP64_Quaternion * quaternion1, const BGC_FP64_Quaternion * quaternion2, BGC_FP64_Quaternion * sum) { sum->s0 = quaternion1->s0 + quaternion2->s0; sum->x1 = quaternion1->x1 + quaternion2->x1; sum->x2 = quaternion1->x2 + quaternion2->x2; sum->x3 = quaternion1->x3 + quaternion2->x3; } // ================= Add Scaled ================= // inline void bgc_fp32_quaternion_add_scaled(const BGC_FP32_Quaternion * basic_quaternion, const BGC_FP32_Quaternion * scalable_quaternion, const float scale, BGC_FP32_Quaternion * sum) { sum->s0 = basic_quaternion->s0 + scalable_quaternion->s0 * scale; sum->x1 = basic_quaternion->x1 + scalable_quaternion->x1 * scale; sum->x2 = basic_quaternion->x2 + scalable_quaternion->x2 * scale; sum->x3 = basic_quaternion->x3 + scalable_quaternion->x3 * scale; } inline void bgc_fp64_quaternion_add_scaled(const BGC_FP64_Quaternion * basic_quaternion, const BGC_FP64_Quaternion * scalable_quaternion, const double scale, BGC_FP64_Quaternion * sum) { sum->s0 = basic_quaternion->s0 + scalable_quaternion->s0 * scale; sum->x1 = basic_quaternion->x1 + scalable_quaternion->x1 * scale; sum->x2 = basic_quaternion->x2 + scalable_quaternion->x2 * scale; sum->x3 = basic_quaternion->x3 + scalable_quaternion->x3 * scale; } // ================== Subtract ================== // inline void bgc_fp32_quaternion_subtract(const BGC_FP32_Quaternion * minuend, const BGC_FP32_Quaternion * subtrahend, BGC_FP32_Quaternion * difference) { difference->s0 = minuend->s0 - subtrahend->s0; difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; difference->x3 = minuend->x3 - subtrahend->x3; } inline void bgc_fp64_quaternion_subtract(const BGC_FP64_Quaternion * minuend, const BGC_FP64_Quaternion * subtrahend, BGC_FP64_Quaternion * difference) { difference->s0 = minuend->s0 - subtrahend->s0; difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; difference->x3 = minuend->x3 - subtrahend->x3; } // ================== Multiply ================== // inline void bgc_fp32_quaternion_get_product(const BGC_FP32_Quaternion* left, const BGC_FP32_Quaternion* right, BGC_FP32_Quaternion* product) { const float s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3); const float x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3); const float x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1); const float x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2); product->s0 = s0; product->x1 = x1; product->x2 = x2; product->x3 = x3; } inline void bgc_fp64_quaternion_get_product(const BGC_FP64_Quaternion* left, const BGC_FP64_Quaternion* right, BGC_FP64_Quaternion* product) { const double s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3); const double x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3); const double x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1); const double x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2); product->s0 = s0; product->x1 = x1; product->x2 = x2; product->x3 = x3; } inline void bgc_fp32_quaternion_multiply(const BGC_FP32_Quaternion* multiplicand, const float multipier, BGC_FP32_Quaternion* product) { product->s0 = multiplicand->s0 * multipier; product->x1 = multiplicand->x1 * multipier; product->x2 = multiplicand->x2 * multipier; product->x3 = multiplicand->x3 * multipier; } inline void bgc_fp64_quaternion_multiply(const BGC_FP64_Quaternion* multiplicand, const double multipier, BGC_FP64_Quaternion* product) { product->s0 = multiplicand->s0 * multipier; product->x1 = multiplicand->x1 * multipier; product->x2 = multiplicand->x2 * multipier; product->x3 = multiplicand->x3 * multipier; } // =================== Divide =================== // inline int bgc_fp32_quaternion_get_ratio(const BGC_FP32_Quaternion* divident, const BGC_FP32_Quaternion* divisor, BGC_FP32_Quaternion* quotient) { const float square_modulus = bgc_fp32_quaternion_get_square_modulus(divisor); if (square_modulus <= BGC_FP32_SQUARE_EPSYLON || isnan(square_modulus)) { return 0; } const float s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3); const float x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3); const float x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1); const float x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2); const float multiplicand = 1.0f / square_modulus; quotient->s0 = s0 * multiplicand; quotient->x1 = x1 * multiplicand; quotient->x2 = x2 * multiplicand; quotient->x3 = x3 * multiplicand; return 1; } inline int bgc_fp64_quaternion_get_ratio(const BGC_FP64_Quaternion* divident, const BGC_FP64_Quaternion* divisor, BGC_FP64_Quaternion* quotient) { const double square_modulus = bgc_fp64_quaternion_get_square_modulus(divisor); if (square_modulus <= BGC_FP64_SQUARE_EPSYLON || isnan(square_modulus)) { return 0; } const double s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3); const double x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3); const double x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1); const double x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2); const double multiplicand = 1.0 / square_modulus; quotient->s0 = s0 * multiplicand; quotient->x1 = x1 * multiplicand; quotient->x2 = x2 * multiplicand; quotient->x3 = x3 * multiplicand; return 1; } inline void bgc_fp32_quaternion_divide(const BGC_FP32_Quaternion* dividend, const float divisor, BGC_FP32_Quaternion* quotient) { bgc_fp32_quaternion_multiply(dividend, 1.0f / divisor, quotient); } inline void bgc_fp64_quaternion_divide(const BGC_FP64_Quaternion* dividend, const double divisor, BGC_FP64_Quaternion* quotient) { bgc_fp64_quaternion_multiply(dividend, 1.0 / divisor, quotient); } // ================ Mean of Two ================= // inline void bgc_fp32_quaternion_get_mean2(const BGC_FP32_Quaternion* vector1, const BGC_FP32_Quaternion* vector2, BGC_FP32_Quaternion* mean) { mean->s0 = (vector1->s0 + vector2->s0) * 0.5f; mean->x1 = (vector1->x1 + vector2->x1) * 0.5f; mean->x2 = (vector1->x2 + vector2->x2) * 0.5f; mean->x3 = (vector1->x3 + vector2->x3) * 0.5f; } inline void bgc_fp64_quaternion_get_mean2(const BGC_FP64_Quaternion* vector1, const BGC_FP64_Quaternion* vector2, BGC_FP64_Quaternion* mean) { mean->s0 = (vector1->s0 + vector2->s0) * 0.5f; mean->x1 = (vector1->x1 + vector2->x1) * 0.5f; mean->x2 = (vector1->x2 + vector2->x2) * 0.5f; mean->x3 = (vector1->x3 + vector2->x3) * 0.5f; } // =============== Mean of Three ================ // inline void bgc_fp32_quaternion_get_mean3(const BGC_FP32_Quaternion* vector1, const BGC_FP32_Quaternion* vector2, const BGC_FP32_Quaternion* vector3, BGC_FP32_Quaternion* mean) { mean->s0 = (vector1->s0 + vector2->s0 + vector3->s0) * BGC_FP32_ONE_THIRD; mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_FP32_ONE_THIRD; mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_FP32_ONE_THIRD; mean->x3 = (vector1->x3 + vector2->x3 + vector3->x3) * BGC_FP32_ONE_THIRD; } inline void bgc_fp64_quaternion_get_mean3(const BGC_FP64_Quaternion* vector1, const BGC_FP64_Quaternion* vector2, const BGC_FP64_Quaternion* vector3, BGC_FP64_Quaternion* mean) { mean->s0 = (vector1->s0 + vector2->s0 + vector3->s0) * BGC_FP64_ONE_THIRD; mean->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * BGC_FP64_ONE_THIRD; mean->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * BGC_FP64_ONE_THIRD; mean->x3 = (vector1->x3 + vector2->x3 + vector3->x3) * BGC_FP64_ONE_THIRD; } // ============ Linear Interpolation ============ // inline void bgc_fp32_quaternion_interpolate(const BGC_FP32_Quaternion* quaternion1, const BGC_FP32_Quaternion* quaternion2, const float phase, BGC_FP32_Quaternion* interpolation) { const float counter_phase = 1.0f - phase; interpolation->s0 = quaternion1->s0 * counter_phase + quaternion2->s0 * phase; interpolation->x1 = quaternion1->x1 * counter_phase + quaternion2->x1 * phase; interpolation->x2 = quaternion1->x2 * counter_phase + quaternion2->x2 * phase; interpolation->x3 = quaternion1->x3 * counter_phase + quaternion2->x3 * phase; } inline void bgc_fp64_quaternion_interpolate(const BGC_FP64_Quaternion* quaternion1, const BGC_FP64_Quaternion* quaternion2, const double phase, BGC_FP64_Quaternion* interpolation) { const double counter_phase = 1.0 - phase; interpolation->s0 = quaternion1->s0 * counter_phase + quaternion2->s0 * phase; interpolation->x1 = quaternion1->x1 * counter_phase + quaternion2->x1 * phase; interpolation->x2 = quaternion1->x2 * counter_phase + quaternion2->x2 * phase; interpolation->x3 = quaternion1->x3 * counter_phase + quaternion2->x3 * phase; } // ================= Conjugate ================== // inline void bgc_fp32_quaternion_conjugate(BGC_FP32_Quaternion* quaternion) { quaternion->x1 = -quaternion->x1; quaternion->x2 = -quaternion->x2; quaternion->x3 = -quaternion->x3; } inline void bgc_fp64_quaternion_conjugate(BGC_FP64_Quaternion* quaternion) { quaternion->x1 = -quaternion->x1; quaternion->x2 = -quaternion->x2; quaternion->x3 = -quaternion->x3; } inline void bgc_fp32_quaternion_get_conjugate(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Quaternion* conjugate) { conjugate->s0 = quaternion->s0; conjugate->x1 = -quaternion->x1; conjugate->x2 = -quaternion->x2; conjugate->x3 = -quaternion->x3; } inline void bgc_fp64_quaternion_get_conjugate(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Quaternion* conjugate) { conjugate->s0 = quaternion->s0; conjugate->x1 = -quaternion->x1; conjugate->x2 = -quaternion->x2; conjugate->x3 = -quaternion->x3; } // ================== Negative ================== // inline void bgc_fp32_quaternion_revert(BGC_FP32_Quaternion* quaternion) { quaternion->s0 = -quaternion->s0; quaternion->x1 = -quaternion->x1; quaternion->x2 = -quaternion->x2; quaternion->x3 = -quaternion->x3; } inline void bgc_fp64_quaternion_revert(BGC_FP64_Quaternion* quaternion) { quaternion->s0 = -quaternion->s0; quaternion->x1 = -quaternion->x1; quaternion->x2 = -quaternion->x2; quaternion->x3 = -quaternion->x3; } inline void bgc_fp32_quaternion_get_reverse(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Quaternion* opposite) { opposite->s0 = -quaternion->s0; opposite->x1 = -quaternion->x1; opposite->x2 = -quaternion->x2; opposite->x3 = -quaternion->x3; } inline void bgc_fp64_quaternion_get_reverse(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Quaternion* opposite) { opposite->s0 = -quaternion->s0; opposite->x1 = -quaternion->x1; opposite->x2 = -quaternion->x2; opposite->x3 = -quaternion->x3; } // =================== Invert =================== // inline int bgc_fp32_quaternion_get_inverse(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Quaternion* inverse) { const float square_modulus = bgc_fp32_quaternion_get_square_modulus(quaternion); if (square_modulus <= BGC_FP32_SQUARE_EPSYLON || isnan(square_modulus)) { return 0; } const float multiplicand = 1.0f / square_modulus; inverse->s0 = quaternion->s0 * multiplicand; inverse->x1 = -quaternion->x1 * multiplicand; inverse->x2 = -quaternion->x2 * multiplicand; inverse->x3 = -quaternion->x3 * multiplicand; return 1; } inline int bgc_fp64_quaternion_get_inverse(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Quaternion* inverse) { const double square_modulus = bgc_fp64_quaternion_get_square_modulus(quaternion); if (square_modulus <= BGC_FP64_SQUARE_EPSYLON || isnan(square_modulus)) { return 0; } const double multiplicand = 1.0 / square_modulus; inverse->s0 = quaternion->s0 * multiplicand; inverse->x1 = -quaternion->x1 * multiplicand; inverse->x2 = -quaternion->x2 * multiplicand; inverse->x3 = -quaternion->x3 * multiplicand; return 1; } inline int bgc_fp32_quaternion_invert(BGC_FP32_Quaternion* quaternion) { return bgc_fp32_quaternion_get_inverse(quaternion, quaternion); } inline int bgc_fp64_quaternion_invert(BGC_FP64_Quaternion* quaternion) { return bgc_fp64_quaternion_get_inverse(quaternion, quaternion); } // ================= Normalize ================== // inline int bgc_fp32_quaternion_normalize(BGC_FP32_Quaternion* quaternion) { const float square_modulus = bgc_fp32_quaternion_get_square_modulus(quaternion); if (bgc_fp32_is_square_unit(square_modulus)) { return 1; } if (square_modulus <= BGC_FP32_SQUARE_EPSYLON || isnan(square_modulus)) { return 0; } const float multiplier = sqrtf(1.0f / square_modulus); quaternion->s0 *= multiplier; quaternion->x1 *= multiplier; quaternion->x2 *= multiplier; quaternion->x3 *= multiplier; return 1; } inline int bgc_fp64_quaternion_normalize(BGC_FP64_Quaternion* quaternion) { const double square_modulus = bgc_fp64_quaternion_get_square_modulus(quaternion); if (bgc_fp64_is_square_unit(square_modulus)) { return 1; } if (square_modulus <= BGC_FP64_SQUARE_EPSYLON || isnan(square_modulus)) { return 0; } const double multiplier = sqrt(1.0 / square_modulus); quaternion->s0 *= multiplier; quaternion->x1 *= multiplier; quaternion->x2 *= multiplier; quaternion->x3 *= multiplier; return 1; } inline int bgc_fp32_quaternion_get_normalized(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Quaternion* normalized) { const float square_modulus = bgc_fp32_quaternion_get_square_modulus(quaternion); if (bgc_fp32_is_square_unit(square_modulus)) { bgc_fp32_quaternion_copy(quaternion, normalized); return 1; } if (square_modulus <= BGC_FP32_SQUARE_EPSYLON || isnan(square_modulus)) { bgc_fp32_quaternion_reset(normalized); return 0; } bgc_fp32_quaternion_multiply(quaternion, sqrtf(1.0f / square_modulus), normalized); return 1; } inline int bgc_fp64_quaternion_get_normalized(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Quaternion* normalized) { const double square_modulus = bgc_fp64_quaternion_get_square_modulus(quaternion); if (bgc_fp64_is_square_unit(square_modulus)) { bgc_fp64_quaternion_copy(quaternion, normalized); return 1; } if (square_modulus <= BGC_FP64_SQUARE_EPSYLON || isnan(square_modulus)) { bgc_fp64_quaternion_reset(normalized); return 0; } bgc_fp64_quaternion_multiply(quaternion, sqrt(1.0 / square_modulus), normalized); return 1; } // =============== Get Exponation =============== // int bgc_fp32_quaternion_get_exponation(const BGC_FP32_Quaternion* base, const float exponent, BGC_FP32_Quaternion* power); int bgc_fp64_quaternion_get_exponation(const BGC_FP64_Quaternion* base, const double exponent, BGC_FP64_Quaternion* power); // ============ Get Rotation Matrix ============= // inline int bgc_fp32_quaternion_get_rotation_matrix(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Matrix3x3* rotation) { const float s0s0 = quaternion->s0 * quaternion->s0; const float x1x1 = quaternion->x1 * quaternion->x1; const float x2x2 = quaternion->x2 * quaternion->x2; const float x3x3 = quaternion->x3 * quaternion->x3; const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_FP32_SQUARE_EPSYLON || isnan(square_modulus)) { bgc_fp32_matrix3x3_make_identity(rotation); return 0; } const float corrector1 = 1.0f / square_modulus; const float s0x1 = quaternion->s0 * quaternion->x1; const float s0x2 = quaternion->s0 * quaternion->x2; const float s0x3 = quaternion->s0 * quaternion->x3; const float x1x2 = quaternion->x1 * quaternion->x2; const float x1x3 = quaternion->x1 * quaternion->x3; const float x2x3 = quaternion->x2 * quaternion->x3; const float corrector2 = 2.0f * corrector1; rotation->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); rotation->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); rotation->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); rotation->r1c2 = corrector2 * (x1x2 - s0x3); rotation->r2c3 = corrector2 * (x2x3 - s0x1); rotation->r3c1 = corrector2 * (x1x3 - s0x2); rotation->r2c1 = corrector2 * (x1x2 + s0x3); rotation->r3c2 = corrector2 * (x2x3 + s0x1); rotation->r1c3 = corrector2 * (x1x3 + s0x2); return 1; } inline int bgc_fp64_quaternion_get_rotation_matrix(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Matrix3x3* rotation) { const double s0s0 = quaternion->s0 * quaternion->s0; const double x1x1 = quaternion->x1 * quaternion->x1; const double x2x2 = quaternion->x2 * quaternion->x2; const double x3x3 = quaternion->x3 * quaternion->x3; const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_FP64_SQUARE_EPSYLON || isnan(square_modulus)) { bgc_fp64_matrix3x3_make_identity(rotation); return 0; } const double corrector1 = 1.0f / square_modulus; const double s0x1 = quaternion->s0 * quaternion->x1; const double s0x2 = quaternion->s0 * quaternion->x2; const double s0x3 = quaternion->s0 * quaternion->x3; const double x1x2 = quaternion->x1 * quaternion->x2; const double x1x3 = quaternion->x1 * quaternion->x3; const double x2x3 = quaternion->x2 * quaternion->x3; const double corrector2 = 2.0f * corrector1; rotation->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); rotation->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); rotation->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); rotation->r1c2 = corrector2 * (x1x2 - s0x3); rotation->r2c3 = corrector2 * (x2x3 - s0x1); rotation->r3c1 = corrector2 * (x1x3 - s0x2); rotation->r2c1 = corrector2 * (x1x2 + s0x3); rotation->r3c2 = corrector2 * (x2x3 + s0x1); rotation->r1c3 = corrector2 * (x1x3 + s0x2); return 1; } // ============= Get Reverse Matrix ============= // inline int bgc_fp32_quaternion_get_reverse_matrix(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Matrix3x3* reverse) { const float s0s0 = quaternion->s0 * quaternion->s0; const float x1x1 = quaternion->x1 * quaternion->x1; const float x2x2 = quaternion->x2 * quaternion->x2; const float x3x3 = quaternion->x3 * quaternion->x3; const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_FP32_SQUARE_EPSYLON || isnan(square_modulus)) { bgc_fp32_matrix3x3_make_identity(reverse); return 0; } const float corrector1 = 1.0f / square_modulus; const float s0x1 = quaternion->s0 * quaternion->x1; const float s0x2 = quaternion->s0 * quaternion->x2; const float s0x3 = quaternion->s0 * quaternion->x3; const float x1x2 = quaternion->x1 * quaternion->x2; const float x1x3 = quaternion->x1 * quaternion->x3; const float x2x3 = quaternion->x2 * quaternion->x3; const float corrector2 = 2.0f * corrector1; reverse->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); reverse->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); reverse->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); reverse->r1c2 = corrector2 * (x1x2 + s0x3); reverse->r2c3 = corrector2 * (x2x3 + s0x1); reverse->r3c1 = corrector2 * (x1x3 + s0x2); reverse->r2c1 = corrector2 * (x1x2 - s0x3); reverse->r3c2 = corrector2 * (x2x3 - s0x1); reverse->r1c3 = corrector2 * (x1x3 - s0x2); return 1; } inline int bgc_fp64_quaternion_get_reverse_matrix(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Matrix3x3* reverse) { const double s0s0 = quaternion->s0 * quaternion->s0; const double x1x1 = quaternion->x1 * quaternion->x1; const double x2x2 = quaternion->x2 * quaternion->x2; const double x3x3 = quaternion->x3 * quaternion->x3; const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_FP64_SQUARE_EPSYLON || isnan(square_modulus)) { bgc_fp64_matrix3x3_make_identity(reverse); return 0; } const double corrector1 = 1.0f / square_modulus; const double s0x1 = quaternion->s0 * quaternion->x1; const double s0x2 = quaternion->s0 * quaternion->x2; const double s0x3 = quaternion->s0 * quaternion->x3; const double x1x2 = quaternion->x1 * quaternion->x2; const double x1x3 = quaternion->x1 * quaternion->x3; const double x2x3 = quaternion->x2 * quaternion->x3; const double corrector2 = 2.0f * corrector1; reverse->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); reverse->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); reverse->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); reverse->r1c2 = corrector2 * (x1x2 + s0x3); reverse->r2c3 = corrector2 * (x2x3 + s0x1); reverse->r3c1 = corrector2 * (x1x3 + s0x2); reverse->r2c1 = corrector2 * (x1x2 - s0x3); reverse->r3c2 = corrector2 * (x2x3 - s0x1); reverse->r1c3 = corrector2 * (x1x3 - s0x2); return 1; } // ============= Get Both Matrixes ============== // inline int bgc_fp32_quaternion_get_both_matrices(const BGC_FP32_Quaternion* quaternion, BGC_FP32_Matrix3x3* rotation, BGC_FP32_Matrix3x3* reverse) { if (bgc_fp32_quaternion_get_reverse_matrix(quaternion, reverse)) { bgc_fp32_matrix3x3_get_transposed(reverse, rotation); return 1; } return 0; } inline int bgc_fp64_quaternion_get_both_matrices(const BGC_FP64_Quaternion* quaternion, BGC_FP64_Matrix3x3* rotation, BGC_FP64_Matrix3x3* reverse) { if (bgc_fp64_quaternion_get_reverse_matrix(quaternion, reverse)) { bgc_fp64_matrix3x3_get_transposed(reverse, rotation); return 1; } return 0; } // ================== Are Close ================= // inline int bgc_fp32_quaternion_are_close(const BGC_FP32_Quaternion* quaternion1, const BGC_FP32_Quaternion* quaternion2) { const float ds0 = quaternion1->s0 - quaternion2->s0; const float dx1 = quaternion1->x1 - quaternion2->x1; const float dx2 = quaternion1->x2 - quaternion2->x2; const float dx3 = quaternion1->x3 - quaternion2->x3; const float square_modulus1 = bgc_fp32_quaternion_get_square_modulus(quaternion1); const float square_modulus2 = bgc_fp32_quaternion_get_square_modulus(quaternion2); const float square_distance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3); if (square_modulus1 <= BGC_FP32_EPSYLON_EFFECTIVENESS_LIMIT || square_modulus2 <= BGC_FP32_EPSYLON_EFFECTIVENESS_LIMIT) { return square_distance <= BGC_FP32_SQUARE_EPSYLON; } return square_distance <= BGC_FP32_SQUARE_EPSYLON * square_modulus1 && square_distance <= BGC_FP32_SQUARE_EPSYLON * square_modulus2; } inline int bgc_fp64_quaternion_are_close(const BGC_FP64_Quaternion* quaternion1, const BGC_FP64_Quaternion* quaternion2) { const double ds0 = quaternion1->s0 - quaternion2->s0; const double dx1 = quaternion1->x1 - quaternion2->x1; const double dx2 = quaternion1->x2 - quaternion2->x2; const double dx3 = quaternion1->x3 - quaternion2->x3; const double square_modulus1 = bgc_fp64_quaternion_get_square_modulus(quaternion1); const double square_modulus2 = bgc_fp64_quaternion_get_square_modulus(quaternion2); const double square_distance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3); if (square_modulus1 <= BGC_FP64_EPSYLON_EFFECTIVENESS_LIMIT || square_modulus2 <= BGC_FP64_EPSYLON_EFFECTIVENESS_LIMIT) { return square_distance <= BGC_FP64_SQUARE_EPSYLON; } return square_distance <= BGC_FP64_SQUARE_EPSYLON * square_modulus1 && square_distance <= BGC_FP64_SQUARE_EPSYLON * square_modulus2; } #endif