#ifndef _BGC_COMPLEX_H_ #define _BGC_COMPLEX_H_ #include "utilities.h" #include "angle.h" #include typedef struct { float real, imaginary; } BgcComplexFP32; typedef struct { double real, imaginary; } BgcComplexFP64; // =================== Reset ==================== // inline void bgc_complex_reset_fp32(BgcComplexFP32* complex) { complex->real = 0.0f; complex->imaginary = 0.0f; } inline void bgc_complex_reset_fp64(BgcComplexFP64* complex) { complex->real = 0.0; complex->imaginary = 0.0; } // ==================== Set ===================== // inline void bgc_complex_set_values_fp32(const float real, const float imaginary, BgcComplexFP32* destination) { destination->real = real; destination->imaginary = imaginary; } inline void bgc_complex_set_values_fp64(const double real, const double imaginary, BgcComplexFP64* destination) { destination->real = real; destination->imaginary = imaginary; } // ================== Modulus =================== // inline float bgc_complex_get_square_modulus_fp32(const BgcComplexFP32* number) { return number->real * number->real + number->imaginary * number->imaginary; } inline double bgc_complex_get_square_modulus_fp64(const BgcComplexFP64* number) { return number->real * number->real + number->imaginary * number->imaginary; } inline float bgc_complex_get_modulus_fp32(const BgcComplexFP32* number) { return sqrtf(bgc_complex_get_square_modulus_fp32(number)); } inline double bgc_complex_get_modulus_fp64(const BgcComplexFP64* number) { return sqrt(bgc_complex_get_square_modulus_fp64(number)); } // ================= Comparison ================= // inline int bgc_complex_is_zero_fp32(const BgcComplexFP32* number) { return bgc_complex_get_square_modulus_fp32(number) <= BGC_SQUARE_EPSYLON_FP32; } inline int bgc_complex_is_zero_fp64(const BgcComplexFP64* number) { return bgc_complex_get_square_modulus_fp64(number) <= BGC_SQUARE_EPSYLON_FP64; } inline int bgc_complex_is_unit_fp32(const BgcComplexFP32* number) { return bgc_is_sqare_unit_fp32(bgc_complex_get_square_modulus_fp32(number)); } inline int bgc_complex_is_unit_fp64(const BgcComplexFP64* number) { return bgc_is_sqare_unit_fp64(bgc_complex_get_square_modulus_fp64(number)); } // ==================== Copy ==================== // inline void bgc_complex_copy_fp32(const BgcComplexFP32* source, BgcComplexFP32* destination) { destination->real = source->real; destination->imaginary = source->imaginary; } inline void bgc_complex_copy_fp64(const BgcComplexFP64* source, BgcComplexFP64* destination) { destination->real = source->real; destination->imaginary = source->imaginary; } // ==================== Swap ==================== // inline void bgc_complex_swap_fp32(BgcComplexFP32* number1, BgcComplexFP32* number2) { const float real = number2->real; const float imaginary = number2->imaginary; number2->real = number1->real; number2->imaginary = number1->imaginary; number1->real = real; number1->imaginary = imaginary; } inline void bgc_complex_swap_fp64(BgcComplexFP64* number1, BgcComplexFP64* number2) { const double real = number2->real; const double imaginary = number2->imaginary; number2->real = number1->real; number2->imaginary = number1->imaginary; number1->real = real; number1->imaginary = imaginary; } // ================== Convert =================== // inline void bgc_complex_convert_fp64_to_fp32(const BgcComplexFP64* source, BgcComplexFP32* destination) { destination->real = (float)source->real; destination->imaginary = (float)source->imaginary; } inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcComplexFP64* destination) { destination->real = source->real; destination->imaginary = source->imaginary; } // ================== Reverse =================== // inline void bgc_complex_reverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* reverse) { reverse->real = -number->real; reverse->imaginary = -number->imaginary; } inline void bgc_complex_reverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* reverse) { reverse->real = -number->real; reverse->imaginary = -number->imaginary; } // ================= Normalize ================== // inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized) { const float square_modulus = bgc_complex_get_square_modulus_fp32(number); if (bgc_is_sqare_unit_fp32(square_modulus)) { normalized->real = number->real; normalized->imaginary = number->imaginary; return 1; } if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float multiplicand = sqrtf(1.0f / square_modulus); normalized->real = number->real * multiplicand; normalized->imaginary = number->imaginary * multiplicand; return 1; } inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized) { const double square_modulus = bgc_complex_get_square_modulus_fp64(number); if (bgc_is_sqare_unit_fp64(square_modulus)) { normalized->real = number->real; normalized->imaginary = number->imaginary; return 1; } if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double multiplicand = sqrt(1.0 / square_modulus); normalized->real = number->real * multiplicand; normalized->imaginary = number->imaginary * multiplicand; return 1; } // ================= Conjugate ================== // inline void bgc_complex_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate) { conjugate->real = number->real; conjugate->imaginary = -number->imaginary; } inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate) { conjugate->real = number->real; conjugate->imaginary = -number->imaginary; } // =================== Invert =================== // inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverted) { const float square_modulus = bgc_complex_get_square_modulus_fp32(number); if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float multiplicand = 1.0f / square_modulus; inverted->real = number->real * multiplicand; inverted->imaginary = -number->imaginary * multiplicand; return 1; } inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverted) { const double square_modulus = bgc_complex_get_square_modulus_fp64(number); if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double multiplicand = 1.0 / square_modulus; inverted->real = number->real * multiplicand; inverted->imaginary = -number->imaginary * multiplicand; return 1; } // ================ Get Product ================= // inline void bgc_complex_get_product_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result) { const float real = number1->real * number2->real - number1->imaginary * number2->imaginary; const float imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real; result->real = real; result->imaginary = imaginary; } inline void bgc_complex_get_product_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result) { const double real = number1->real * number2->real - number1->imaginary * number2->imaginary; const double imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real; result->real = real; result->imaginary = imaginary; } // ================= Get Ratio ================== // inline int bgc_complex_get_ratio_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient) { const float square_modulus = bgc_complex_get_square_modulus_fp32(divisor); if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) { return 0; } const float real = divident->real * divisor->real + divident->imaginary * divisor->imaginary; const float imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary; const float multiplier = 1.0f / square_modulus; quotient->real = real * multiplier; quotient->imaginary = imaginary * multiplier; return 1; } inline int bgc_complex_get_ratio_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient) { const double square_modulus = bgc_complex_get_square_modulus_fp64(divisor); if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) { return 0; } const double real = divident->real * divisor->real + divident->imaginary * divisor->imaginary; const double imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary; const double multiplier = 1.0 / square_modulus; quotient->real = real * multiplier; quotient->imaginary = imaginary * multiplier; return 1; } // =============== Get Exponation =============== // void bgc_complex_get_exponation_fp32(const BgcComplexFP32* base, const float real_exponent, const float imaginary_exponent, BgcComplexFP32* power); void bgc_complex_get_exponation_fp64(const BgcComplexFP64* base, const double real_exponent, const double imaginary_exponent, BgcComplexFP64* power); // ==================== Add ===================== // inline void bgc_complex_add_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* sum) { sum->real = number1->real + number2->real; sum->imaginary = number1->imaginary + number2->imaginary; } inline void bgc_complex_add_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* sum) { sum->real = number1->real + number2->real; sum->imaginary = number1->imaginary + number2->imaginary; } // ================= Add scaled ================= // inline void bgc_complex_add_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* sum) { sum->real = basic_number->real + scalable_number->real * scale; sum->imaginary = basic_number->imaginary + scalable_number->imaginary * scale; } inline void bgc_complex_add_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* sum) { sum->real = basic_number->real + scalable_number->real * scale; sum->imaginary = basic_number->imaginary + scalable_number->imaginary * scale; } // ================== Subtract ================== // inline void bgc_complex_subtract_fp32(const BgcComplexFP32* minuend, const BgcComplexFP32* subtrahend, BgcComplexFP32* difference) { difference->real = minuend->real - subtrahend->real; difference->imaginary = minuend->imaginary - subtrahend->imaginary; } inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcComplexFP64* subtrahend, BgcComplexFP64* difference) { difference->real = minuend->real - subtrahend->real; difference->imaginary = minuend->imaginary - subtrahend->imaginary; } // ============== Subtract scaled =============== // inline void bgc_complex_subtract_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* difference) { difference->real = basic_number->real - scalable_number->real * scale; difference->imaginary = basic_number->imaginary - scalable_number->imaginary * scale; } inline void bgc_complex_subtract_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* difference) { difference->real = basic_number->real - scalable_number->real * scale; difference->imaginary = basic_number->imaginary - scalable_number->imaginary * scale; } // ================== Multiply ================== // inline void bgc_complex_multiply_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product) { product->real = multiplicand->real * multiplier; product->imaginary = multiplicand->imaginary * multiplier; } inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product) { product->real = multiplicand->real * multiplier; product->imaginary = multiplicand->imaginary * multiplier; } // =================== Divide =================== // inline void bgc_complex_divide_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient) { bgc_complex_multiply_fp32(dividend, 1.0f / divisor, quotient); } inline void bgc_complex_divide_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient) { bgc_complex_multiply_fp64(dividend, 1.0 / divisor, quotient); } // ================== Average2 ================== // inline void bgc_complex_get_mean_of_two_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* mean) { mean->real = (number1->real + number2->real) * 0.5f; mean->imaginary = (number1->imaginary + number2->imaginary) * 0.5f; } inline void bgc_complex_get_mean_of_two_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* mean) { mean->real = (number1->real + number2->real) * 0.5; mean->imaginary = (number1->imaginary + number2->imaginary) * 0.5; } // ================== Average3 ================== // inline void bgc_complex_get_mean_of_three_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const BgcComplexFP32* number3, BgcComplexFP32* mean) { mean->real = (number1->real + number2->real + number3->real) * BGC_ONE_THIRD_FP32; mean->imaginary = (number1->imaginary + number2->imaginary + number3->imaginary) * BGC_ONE_THIRD_FP32; } inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const BgcComplexFP64* number3, BgcComplexFP64* mean) { mean->real = (number1->real + number2->real + number3->real) * BGC_ONE_THIRD_FP64; mean->imaginary = (number1->imaginary + number2->imaginary + number3->imaginary) * BGC_ONE_THIRD_FP64; } // =================== Linear =================== // inline void bgc_complex_get_linear_interpolation_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation) { const float counterphase = 1.0f - phase; interpolation->real = number1->real * counterphase + number2->real * phase; interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase; } inline void bgc_complex_get_linear_interpolation_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation) { const double counterphase = 1.0 - phase; interpolation->real = number1->real * counterphase + number2->real * phase; interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase; } // ================== Minimal =================== // inline void bgc_complex_minimize_fp32(const BgcComplexFP32* number, BgcComplexFP32* minimal) { if (number->real < minimal->real) { minimal->real = number->real; } if (number->imaginary < minimal->imaginary) { minimal->imaginary = number->imaginary; } } inline void bgc_complex_minimize_fp64(const BgcComplexFP64* number, BgcComplexFP64* minimal) { if (number->real < minimal->real) { minimal->real = number->real; } if (number->imaginary < minimal->imaginary) { minimal->imaginary = number->imaginary; } } // ================== Maximal =================== // inline void bgc_complex_maximize_fp32(const BgcComplexFP32* number, BgcComplexFP32* maximal) { if (number->real > maximal->real) { maximal->real = number->real; } if (number->imaginary > maximal->imaginary) { maximal->imaginary = number->imaginary; } } inline void bgc_complex_maximize_fp64(const BgcComplexFP64* number, BgcComplexFP64* maximal) { if (number->real > maximal->real) { maximal->real = number->real; } if (number->imaginary > maximal->imaginary) { maximal->imaginary = number->imaginary; } } // ================== Are Close ================= // inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2) { const float square_modulus1 = bgc_complex_get_square_modulus_fp32(number1); const float square_modulus2 = bgc_complex_get_square_modulus_fp32(number2); const float d_real = number1->real - number2->real; const float d_imaginary = number1->imaginary - number2->imaginary; const float square_distance = d_real * d_real + d_imaginary * d_imaginary; if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32) { return square_distance <= BGC_SQUARE_EPSYLON_FP32; } return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2; } inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2) { const double square_modulus1 = bgc_complex_get_square_modulus_fp64(number1); const double square_modulus2 = bgc_complex_get_square_modulus_fp64(number2); const double d_real = number1->real - number2->real; const double d_imaginary = number1->imaginary - number2->imaginary; const double square_distance = d_real * d_real + d_imaginary * d_imaginary; if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64) { return square_distance <= BGC_SQUARE_EPSYLON_FP64; } return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2; } #endif