#include #include "angle.h" #include "versor.h" const BgFP32Versor BG_FP32_IDLE_VERSOR = { 1.0f, 0.0f, 0.0f, 0.0f }; const BgFP64Versor BG_FP64_IDLE_VERSOR = { 1.0, 0.0, 0.0, 0.0 }; void __bg_fp32_versor_normalize(const float square_modulus, __BgFP32DarkTwinVersor* twin) { const float multiplier = sqrtf(1.0f / square_modulus); twin->s0 *= multiplier; twin->x1 *= multiplier; twin->x2 *= multiplier; twin->x3 *= multiplier; } // =============== Set Crude Turn =============== // void bg_fp32_versor_set_crude_turn(const float x1, const float x2, const float x3, const float angle, const angle_unit_t unit, BgFP32Versor* result) { const float square_vector = x1 * x1 + x2 * x2 + x3 * x3; if (square_vector <= BG_FP32_SQUARE_EPSYLON) { bg_fp32_versor_reset(result); return; } const float half_angle = bg_fp32_angle_to_radians(0.5f * angle, unit); const float sine = sinf(half_angle); if (-BG_FP32_EPSYLON <= sine && sine <= BG_FP32_EPSYLON) { bg_fp32_versor_reset(result); return; } const float multiplier = sine / sqrtf(square_vector); bg_fp32_versor_set_values(cosf(half_angle), x1 * multiplier, x2 * multiplier, x3 * multiplier, result); } void bg_fp64_versor_set_crude_turn(const double x1, const double x2, const double x3, const double angle, const angle_unit_t unit, BgFP64Versor* result) { const double square_vector = x1 * x1 + x2 * x2 + x3 * x3; if (square_vector <= BG_FP64_SQUARE_EPSYLON) { bg_fp64_versor_reset(result); return; } const double half_angle = bg_fp64_angle_to_radians(0.5 * angle, unit); const double sine = sin(half_angle); if (-BG_FP64_EPSYLON <= sine && sine <= BG_FP64_EPSYLON) { bg_fp64_versor_reset(result); return; } const double multiplier = sine / sqrt(square_vector); bg_fp64_versor_set_values(cos(half_angle), x1 * multiplier, x2 * multiplier, x3 * multiplier, result); } // ================= Rotation3 ================== // void bg_fp32_versor_get_rotation(const BgFP32Versor* versor, BgFP32Rotation3* result) { if (versor == 0 || result == 0) { return; } if (versor->s0 <= -(1.0f - BG_FP32_EPSYLON) || 1.0f - BG_FP32_EPSYLON <= versor->s0) { bg_fp32_rotation_reset(result); return; } const float square_vector = versor->x1 * versor->x1 + versor->x2 * versor->x2 + versor->x3 * versor->x3; result->radians = 2.0f * acosf(versor->s0 / sqrtf(versor->s0 * versor->s0 + square_vector)); const float multiplier = sqrtf(1.0f / square_vector); result->axis.x1 = versor->x1 * multiplier; result->axis.x2 = versor->x2 * multiplier; result->axis.x3 = versor->x3 * multiplier; } void bg_fp64_versor_get_rotation(const BgFP64Versor* versor, BgFP64Rotation3* result) { if (versor == 0 || result == 0) { return; } if (versor->s0 <= -(1.0 - BG_FP64_EPSYLON) || 1.0 - BG_FP64_EPSYLON <= versor->s0) { bg_fp64_rotation_reset(result); return; } const double square_vector = versor->x1 * versor->x1 + versor->x2 * versor->x2 + versor->x3 * versor->x3; result->radians = 2.0 * acos(versor->s0 / sqrt(versor->s0 * versor->s0 + square_vector)); const double multiplier = sqrt(1.0 / square_vector); result->axis.x1 = versor->x1 * multiplier; result->axis.x2 = versor->x2 * multiplier; result->axis.x3 = versor->x3 * multiplier; }