#ifndef _BGC_TURN2_H_INCLUDED_ #define _BGC_TURN2_H_INCLUDED_ #include #include "utilities.h" #include "angle.h" #include "vector2.h" #include "matrix2x2.h" // =================== Types ==================== // typedef struct { float _cos, _sin; } BGC_FP32_Turn2; typedef struct { double _cos, _sin; } BGC_FP64_Turn2; // ================= Constants ================== // extern const BGC_FP32_Turn2 BGC_FP32_IDLE_TURN2; extern const BGC_FP64_Turn2 BGC_FP64_IDLE_TURN2; // =================== Reset ==================== // inline void bgc_fp32_turn2_reset(BGC_FP32_Turn2* turn) { turn->_cos = 1.0f; turn->_sin = 0.0f; } inline void bgc_fp64_turn2_reset(BGC_FP64_Turn2* turn) { turn->_cos = 1.0; turn->_sin = 0.0; } // ================== Set Turn ================== // inline void bgc_fp32_turn2_make_for_angle(BGC_FP32_Turn2* turn, const float angle, const int angle_unit) { const float radians = bgc_fp32_angle_to_radians(angle, angle_unit); turn->_cos = cosf(radians); turn->_sin = sinf(radians); } inline void bgc_fp64_turn2_make_for_angle(BGC_FP64_Turn2* turn, const double angle, const int angle_unit) { const double radians = bgc_fp64_angle_to_radians(angle, angle_unit); turn->_cos = cos(radians); turn->_sin = sin(radians); } // ================== Set Turn ================== // inline int bgc_fp32_turn2_is_idle(const BGC_FP32_Turn2* turn) { return bgc_fp32_is_unit(turn->_cos) && bgc_fp32_is_zero(turn->_sin); } inline int bgc_fp64_turn2_is_idle(const BGC_FP64_Turn2* turn) { return bgc_fp64_is_unit(turn->_cos) && bgc_fp64_is_zero(turn->_sin); } // ==================== Set ===================== // void _bgc_fp32_turn2_normalize(BGC_FP32_Turn2* twin); void _bgc_fp64_turn2_normalize(BGC_FP64_Turn2* twin); inline void bgc_fp32_turn2_make(BGC_FP32_Turn2* turn, const float x1, const float x2) { const float square_modulus = x1 * x1 + x2 * x2; turn->_cos = x1; turn->_sin = x2; if (!bgc_fp32_is_square_unit(square_modulus)) { _bgc_fp32_turn2_normalize(turn); } } inline void bgc_fp64_turn2_make(BGC_FP64_Turn2* turn, const double x1, const double x2) { const double square_modulus = x1 * x1 + x2 * x2; turn->_cos = x1; turn->_sin = x2; if (!bgc_fp64_is_square_unit(square_modulus)) { _bgc_fp64_turn2_normalize(turn); } } // =================== Angle =================== // inline float bgc_fp32_turn2_get_angle(const BGC_FP32_Turn2* turn, const int angle_unit) { return bgc_fp32_radians_to_units(atan2f(turn->_sin, turn->_cos), angle_unit); } inline double bgc_fp64_turn2_get_angle(const BGC_FP64_Turn2* turn, const int angle_unit) { return bgc_fp64_radians_to_units(atan2(turn->_sin, turn->_cos), angle_unit); } // ==================== Copy ==================== // inline void bgc_fp32_turn2_copy(BGC_FP32_Turn2* destination, const BGC_FP32_Turn2* source) { destination->_cos = source->_cos; destination->_sin = source->_sin; } inline void bgc_fp64_turn2_copy(BGC_FP64_Turn2* destination, const BGC_FP64_Turn2* source) { destination->_cos = source->_cos; destination->_sin = source->_sin; } // ==================== Swap ==================== // inline void bgc_fp32_turn2_swap(BGC_FP32_Turn2* turn1, BGC_FP32_Turn2* turn2) { const float cos = turn1->_cos; const float sin = turn1->_sin; turn1->_cos = turn2->_cos; turn1->_sin = turn2->_sin; turn2->_cos = cos; turn2->_sin = sin; } inline void bgc_fp64_turn2_swap(BGC_FP64_Turn2* turn1, BGC_FP64_Turn2* turn2) { const double cos = turn1->_cos; const double sin = turn1->_sin; turn1->_cos = turn2->_cos; turn1->_sin = turn2->_sin; turn2->_cos = cos; turn2->_sin = sin; } // ================== Convert =================== // inline void bgc_fp64_turn2_convert_to_fp32(BGC_FP32_Turn2* destination, const BGC_FP64_Turn2* source) { bgc_fp32_turn2_make(destination, (float)source->_cos, (float)source->_sin); } inline void bgc_fp32_turn2_convert_to_fp64(BGC_FP64_Turn2* destination, const BGC_FP32_Turn2* source) { bgc_fp64_turn2_make(destination, (double)source->_cos, (double)source->_sin); } // =================== Revert =================== // inline void bgc_fp32_turn2_revert(BGC_FP32_Turn2* turn) { turn->_sin = -turn->_sin; } inline void bgc_fp64_turn2_revert(BGC_FP64_Turn2* turn) { turn->_sin = -turn->_sin; } inline void bgc_fp32_turn2_get_reverse(BGC_FP32_Turn2* reverse, const BGC_FP32_Turn2* turn) { reverse->_cos = turn->_cos; reverse->_sin = -turn->_sin; } inline void bgc_fp64_turn2_get_reverse(BGC_FP64_Turn2* reverse, const BGC_FP64_Turn2* turn) { reverse->_cos = turn->_cos; reverse->_sin = -turn->_sin; } // ================= Exponation ================= // inline void bgc_fp32_turn2_get_exponation(BGC_FP32_Turn2* power, const BGC_FP32_Turn2* base, const float exponent) { const float power_angle = exponent * atan2f(base->_sin, base->_cos); power->_cos = cosf(power_angle); power->_sin = sinf(power_angle); } inline void bgc_fp64_turn2_get_exponation(BGC_FP64_Turn2* power, const BGC_FP64_Turn2* base, const double exponent) { const double power_angle = exponent * atan2(base->_sin, base->_cos); power->_cos = cos(power_angle); power->_sin = sin(power_angle); } // ================ Combination ================= // inline void bgc_fp32_turn2_combine(BGC_FP32_Turn2* combination, const BGC_FP32_Turn2* turn1, const BGC_FP32_Turn2* turn2) { bgc_fp32_turn2_make( combination, turn1->_cos * turn2->_cos - turn1->_sin * turn2->_sin, turn1->_cos * turn2->_sin + turn1->_sin * turn2->_cos ); } inline void bgc_fp64_turn2_combine(BGC_FP64_Turn2* combination, const BGC_FP64_Turn2* turn1, const BGC_FP64_Turn2* turn2) { bgc_fp64_turn2_make( combination, turn1->_cos * turn2->_cos - turn1->_sin * turn2->_sin, turn1->_cos * turn2->_sin + turn1->_sin * turn2->_cos ); } // ================= Exclusion ================== // inline void bgc_fp32_turn2_exclude(BGC_FP32_Turn2* difference, const BGC_FP32_Turn2* base, const BGC_FP32_Turn2* excludant) { bgc_fp32_turn2_make( difference, base->_cos * excludant->_cos + base->_sin * excludant->_sin, base->_sin * excludant->_cos - base->_cos * excludant->_sin ); } inline void bgc_fp64_turn2_exclude(BGC_FP64_Turn2* difference, const BGC_FP64_Turn2* base, const BGC_FP64_Turn2* excludant) { bgc_fp64_turn2_make( difference, base->_cos * excludant->_cos + base->_sin * excludant->_sin, base->_sin * excludant->_cos - base->_cos * excludant->_sin ); } // ============== Rotation Matrix =============== // inline void bgc_fp32_turn2_get_rotation_matrix(BGC_FP32_Matrix2x2* matrix, const BGC_FP32_Turn2* turn) { matrix->r1c1 = turn->_cos; matrix->r1c2 = -turn->_sin; matrix->r2c1 = turn->_sin; matrix->r2c2 = turn->_cos; } inline void bgc_fp64_turn2_get_rotation_matrix(BGC_FP64_Matrix2x2* matrix, const BGC_FP64_Turn2* turn) { matrix->r1c1 = turn->_cos; matrix->r1c2 = -turn->_sin; matrix->r2c1 = turn->_sin; matrix->r2c2 = turn->_cos; } // ============== Reverse Matrix ================ // inline void bgc_fp32_turn2_get_reverse_matrix(BGC_FP32_Matrix2x2* matrix, const BGC_FP32_Turn2* turn) { matrix->r1c1 = turn->_cos; matrix->r1c2 = turn->_sin; matrix->r2c1 = -turn->_sin; matrix->r2c2 = turn->_cos; } inline void bgc_fp64_turn2_get_reverse_matrix(BGC_FP64_Matrix2x2* matrix, const BGC_FP64_Turn2* turn) { matrix->r1c1 = turn->_cos; matrix->r1c2 = turn->_sin; matrix->r2c1 = -turn->_sin; matrix->r2c2 = turn->_cos; } // ================ Turn Vector ================= // inline void bgc_fp32_turn2_vector(BGC_FP32_Vector2* turned_vector, const BGC_FP32_Turn2* turn, const BGC_FP32_Vector2* vector) { const float x1 = turn->_cos * vector->x1 - turn->_sin * vector->x2; const float x2 = turn->_sin * vector->x1 + turn->_cos * vector->x2; turned_vector->x1 = x1; turned_vector->x2 = x2; } inline void bgc_fp64_turn2_vector(BGC_FP64_Vector2* turned_vector, const BGC_FP64_Turn2* turn, const BGC_FP64_Vector2* vector) { const double x1 = turn->_cos * vector->x1 - turn->_sin * vector->x2; const double x2 = turn->_sin * vector->x1 + turn->_cos * vector->x2; turned_vector->x1 = x1; turned_vector->x2 = x2; } // ============ Turn Vector Backward ============ // inline void bgc_fp32_turn2_vector_back(BGC_FP32_Vector2* turned_vector, const BGC_FP32_Turn2* turn, const BGC_FP32_Vector2* vector) { const float x1 = turn->_sin * vector->x2 + turn->_cos * vector->x1; const float x2 = turn->_cos * vector->x2 - turn->_sin * vector->x1; turned_vector->x1 = x1; turned_vector->x2 = x2; } inline void bgc_fp64_turn2_vector_back(BGC_FP64_Vector2* turned_vector, const BGC_FP64_Turn2* turn, const BGC_FP64_Vector2* vector) { const double x1 = turn->_sin * vector->x2 + turn->_cos * vector->x1; const double x2 = turn->_cos * vector->x2 - turn->_sin * vector->x1; turned_vector->x1 = x1; turned_vector->x2 = x2; } // ================== Are Close ================= // inline int bgc_fp32_turn2_are_close(const BGC_FP32_Turn2* turn1, const BGC_FP32_Turn2* turn2) { const float d_cos = turn1->_cos - turn2->_cos; const float d_sin = turn1->_sin - turn2->_sin; return d_cos * d_cos + d_sin * d_sin <= BGC_FP32_SQUARE_EPSILON; } inline int bgc_fp64_turn2_are_close(const BGC_FP64_Turn2* turn1, const BGC_FP64_Turn2* turn2) { const double d_cos = turn1->_cos - turn2->_cos; const double d_sin = turn1->_sin - turn2->_sin; return d_cos * d_cos + d_sin * d_sin <= BGC_FP64_SQUARE_EPSILON; } #endif