#include "./turn2.h" const BGC_FP32_Turn2 BGC_FP32_IDLE_TURN2 = { 1.0f, 0.0f }; const BGC_FP64_Turn2 BGC_FP64_IDLE_TURN2 = { 1.0, 0.0 }; extern inline void bgc_fp32_turn2_reset(BGC_FP32_Turn2* turn); extern inline void bgc_fp64_turn2_reset(BGC_FP64_Turn2* turn); extern inline void bgc_fp32_turn2_make(BGC_FP32_Turn2* turn, const float x1, const float x2); extern inline void bgc_fp64_turn2_make(BGC_FP64_Turn2* turn, const double x1, const double x2); extern inline void bgc_fp32_turn2_make_for_angle(BGC_FP32_Turn2* turn, const float angle, const int angle_unit); extern inline void bgc_fp64_turn2_make_for_angle(BGC_FP64_Turn2* turn, const double angle, const int angle_unit); extern inline int bgc_fp32_turn2_is_idle(const BGC_FP32_Turn2* turn); extern inline int bgc_fp64_turn2_is_idle(const BGC_FP64_Turn2* turn); extern inline float bgc_fp32_turn2_get_angle(const BGC_FP32_Turn2* turn, const int angle_unit); extern inline double bgc_fp64_turn2_get_angle(const BGC_FP64_Turn2* turn, const int angle_unit); extern inline void bgc_fp32_turn2_copy(BGC_FP32_Turn2* destination, const BGC_FP32_Turn2* source); extern inline void bgc_fp64_turn2_copy(BGC_FP64_Turn2* destination, const BGC_FP64_Turn2* source); extern inline void bgc_fp32_turn2_swap(BGC_FP32_Turn2* turn1, BGC_FP32_Turn2* turn2); extern inline void bgc_fp64_turn2_swap(BGC_FP64_Turn2* turn1, BGC_FP64_Turn2* turn2); extern inline void bgc_fp64_turn2_convert_to_fp32(BGC_FP32_Turn2* destination, const BGC_FP64_Turn2* source); extern inline void bgc_fp32_turn2_convert_to_fp64(BGC_FP64_Turn2* destination, const BGC_FP32_Turn2* source); extern inline void bgc_fp32_turn2_revert(BGC_FP32_Turn2* turn); extern inline void bgc_fp64_turn2_revert(BGC_FP64_Turn2* turn); extern inline void bgc_fp32_turn2_get_reverse(BGC_FP32_Turn2* reverse, const BGC_FP32_Turn2* turn); extern inline void bgc_fp64_turn2_get_reverse(BGC_FP64_Turn2* reverse, const BGC_FP64_Turn2* turn); extern inline void bgc_fp32_turn2_get_exponation(BGC_FP32_Turn2* power, const BGC_FP32_Turn2* base, const float exponent); extern inline void bgc_fp64_turn2_get_exponation(BGC_FP64_Turn2* power, const BGC_FP64_Turn2* base, const double exponent); extern inline void bgc_fp32_turn2_combine(BGC_FP32_Turn2* combination, const BGC_FP32_Turn2* turn1, const BGC_FP32_Turn2* turn2); extern inline void bgc_fp64_turn2_combine(BGC_FP64_Turn2* combination, const BGC_FP64_Turn2* turn1, const BGC_FP64_Turn2* turn2); extern inline void bgc_fp32_turn2_exclude(BGC_FP32_Turn2* difference, const BGC_FP32_Turn2* base, const BGC_FP32_Turn2* excludant); extern inline void bgc_fp64_turn2_exclude(BGC_FP64_Turn2* difference, const BGC_FP64_Turn2* base, const BGC_FP64_Turn2* excludant); extern inline void bgc_fp32_turn2_get_rotation_matrix(BGC_FP32_Matrix2x2* matrix, const BGC_FP32_Turn2* turn); extern inline void bgc_fp64_turn2_get_rotation_matrix(BGC_FP64_Matrix2x2* matrix, const BGC_FP64_Turn2* turn); extern inline void bgc_fp32_turn2_get_reverse_matrix(BGC_FP32_Matrix2x2* matrix, const BGC_FP32_Turn2* turn); extern inline void bgc_fp64_turn2_get_reverse_matrix(BGC_FP64_Matrix2x2* matrix, const BGC_FP64_Turn2* turn); extern inline void bgc_fp32_turn2_vector(BGC_FP32_Vector2* turned_vector, const BGC_FP32_Turn2* turn, const BGC_FP32_Vector2* vector); extern inline void bgc_fp64_turn2_vector(BGC_FP64_Vector2* turned_vector, const BGC_FP64_Turn2* turn, const BGC_FP64_Vector2* vector); extern inline void bgc_fp32_turn2_vector_back(BGC_FP32_Vector2* turned_vector, const BGC_FP32_Turn2* turn, const BGC_FP32_Vector2* vector); extern inline void bgc_fp64_turn2_vector_back(BGC_FP64_Vector2* turned_vector, const BGC_FP64_Turn2* turn, const BGC_FP64_Vector2* vector); extern inline int bgc_fp32_turn2_are_close(const BGC_FP32_Turn2* turn1, const BGC_FP32_Turn2* turn2); extern inline int bgc_fp64_turn2_are_close(const BGC_FP64_Turn2* turn1, const BGC_FP64_Turn2* turn2); void _bgc_fp32_turn2_normalize(BGC_FP32_Turn2* turn) { const float square_modulus = turn->_cos * turn->_cos + turn->_sin * turn->_sin; if (square_modulus <= BGC_FP32_SQUARE_EPSILON || isnan(square_modulus)) { turn->_cos = 1.0f; turn->_sin = 0.0f; return; } const float multiplier = sqrtf(1.0f / square_modulus); turn->_cos *= multiplier; turn->_sin *= multiplier; } void _bgc_fp64_turn2_normalize(BGC_FP64_Turn2* turn) { const double square_modulus = turn->_cos * turn->_cos + turn->_sin * turn->_sin; if (square_modulus <= BGC_FP64_SQUARE_EPSILON || isnan(square_modulus)) { turn->_cos = 1.0; turn->_sin = 0.0; return; } const double multiplier = sqrt(1.0 / square_modulus); turn->_cos *= multiplier; turn->_sin *= multiplier; }