#ifndef _GEOMETRY_MATRIX2X2_H_ #define _GEOMETRY_MATRIX2X2_H_ #include "angle.h" #include "vector2.h" #include "matrixes.h" // =================== Reset ==================== // static inline void bg_fp32_matrix2x2_reset(BgFP32Matrix2x2* matrix) { matrix->r1c1 = 0.0f; matrix->r1c2 = 0.0f; matrix->r2c1 = 0.0f; matrix->r2c2 = 0.0f; } static inline void bg_fp64_matrix2x2_reset(BgFP64Matrix2x2* matrix) { matrix->r1c1 = 0.0; matrix->r1c2 = 0.0; matrix->r2c1 = 0.0; matrix->r2c2 = 0.0; } // ================== Identity ================== // static inline void bg_fp32_matrix2x2_set_to_identity(BgFP32Matrix2x2* matrix) { matrix->r1c1 = 1.0f; matrix->r1c2 = 0.0f; matrix->r2c1 = 0.0f; matrix->r2c2 = 1.0f; } static inline void bg_fp64_matrix2x2_set_to_identity(BgFP64Matrix2x2* matrix) { matrix->r1c1 = 1.0; matrix->r1c2 = 0.0; matrix->r2c1 = 0.0; matrix->r2c2 = 1.0; } // ================ Make Diagonal =============== // static inline void bg_fp32_matrix2x2_set_to_diagonal(const float d1, const float d2, BgFP32Matrix2x2* matrix) { matrix->r1c1 = d1; matrix->r1c2 = 0.0f; matrix->r2c1 = 0.0f; matrix->r2c2 = d2; } static inline void bg_fp64_matrix2x2_set_to_diagonal(const double d1, const double d2, BgFP64Matrix2x2* matrix) { matrix->r1c1 = d1; matrix->r1c2 = 0.0; matrix->r2c1 = 0.0; matrix->r2c2 = d2; } // ============== Rotation Matrix =============== // static inline void bg_fp32_matrix2x2_make_turn(const float angle, const angle_unit_t unit, BgFP32Matrix2x2* matrix) { const float radians = bg_fp32_angle_to_radians(angle, unit); const float cosine = cosf(radians); const float sine = sinf(radians); matrix->r1c1 = cosine; matrix->r1c2 = -sine; matrix->r2c1 = sine; matrix->r2c2 = cosine; } static inline void bg_fp64_matrix2x2_make_turn(const double angle, const angle_unit_t unit, BgFP64Matrix2x2* matrix) { const double radians = bg_fp64_angle_to_radians(angle, unit); const double cosine = cos(radians); const double sine = sin(radians); matrix->r1c1 = cosine; matrix->r1c2 = -sine; matrix->r2c1 = sine; matrix->r2c2 = cosine; } // ==================== Copy ==================== // static inline void bg_fp32_matrix2x2_copy(const BgFP32Matrix2x2* from, BgFP32Matrix2x2* to) { to->r1c1 = from->r1c1; to->r1c2 = from->r1c2; to->r2c1 = from->r2c1; to->r2c2 = from->r2c2; } static inline void bg_fp64_matrix2x2_copy(const BgFP64Matrix2x2* from, BgFP64Matrix2x2* to) { to->r1c1 = from->r1c1; to->r1c2 = from->r1c2; to->r2c1 = from->r2c1; to->r2c2 = from->r2c2; } // ============= Copy to twin type ============== // static inline void bg_fp32_matrix2x2_set_from_fp64(const BgFP64Matrix2x2* from, BgFP32Matrix2x2* to) { to->r1c1 = (float)from->r1c1; to->r1c2 = (float)from->r1c2; to->r2c1 = (float)from->r2c1; to->r2c2 = (float)from->r2c2; } static inline void bg_fp64_matrix2x2_set_from_fp32(const BgFP32Matrix2x2* from, BgFP64Matrix2x2* to) { to->r1c1 = from->r1c1; to->r1c2 = from->r1c2; to->r2c1 = from->r2c1; to->r2c2 = from->r2c2; } // ================ Determinant ================= // static inline float bg_fp32_matrix2x2_get_determinant(const BgFP32Matrix2x2* matrix) { return matrix->r1c1 * matrix->r2c2 - matrix->r1c2 * matrix->r2c1; } static inline double bg_fp64_matrix2x2_get_determinant(const BgFP64Matrix2x2* matrix) { return matrix->r1c1 * matrix->r2c2 - matrix->r1c2 * matrix->r2c1; } // ================== Singular ================== // static inline int bg_fp32_matrix2x2_is_singular(const BgFP32Matrix2x2* matrix) { const float determinant = bg_fp32_matrix2x2_get_determinant(matrix); return -BG_FP32_EPSYLON <= determinant && determinant <= BG_FP32_EPSYLON; } static inline int bg_fp64_matrix2x2_is_singular(const BgFP64Matrix2x2* matrix) { const double determinant = bg_fp64_matrix2x2_get_determinant(matrix); return -BG_FP64_EPSYLON <= determinant && determinant <= BG_FP64_EPSYLON; } // =============== Transposition ================ // static inline void bg_fp32_matrix2x2_transpose(BgFP32Matrix2x2* matrix) { const float tmp = matrix->r1c2; matrix->r1c2 = matrix->r2c1; matrix->r2c1 = tmp; } static inline void bg_fp64_matrix2x2_transpose(BgFP64Matrix2x2* matrix) { const double tmp = matrix->r1c2; matrix->r1c2 = matrix->r2c1; matrix->r2c1 = tmp; } // ================= Inversion ================== // static inline int bg_fp32_matrix2x2_invert(BgFP32Matrix2x2* matrix) { const float determinant = bg_fp32_matrix2x2_get_determinant(matrix); if (-BG_FP32_EPSYLON <= determinant && determinant <= BG_FP32_EPSYLON) { return 0; } const float r1c1 = matrix->r2c2; const float r1c2 = -matrix->r1c2; const float r2c1 = -matrix->r2c1; const float r2c2 = matrix->r1c1; matrix->r1c1 = r1c1 / determinant; matrix->r1c2 = r1c2 / determinant; matrix->r2c1 = r2c1 / determinant; matrix->r2c2 = r2c2 / determinant; return 1; } static inline int bg_fp64_matrix2x2_invert(BgFP64Matrix2x2* matrix) { const double determinant = bg_fp64_matrix2x2_get_determinant(matrix); if (-BG_FP64_EPSYLON <= determinant && determinant <= BG_FP64_EPSYLON) { return 0; } const double r1c1 = matrix->r2c2; const double r1c2 = -matrix->r1c2; const double r2c1 = -matrix->r2c1; const double r2c2 = matrix->r1c1; matrix->r1c1 = r1c1 / determinant; matrix->r1c2 = r1c2 / determinant; matrix->r2c1 = r2c1 / determinant; matrix->r2c2 = r2c2 / determinant; return 1; } // =============== Set Transposed =============== // static inline void bg_fp32_matrix2x2_set_transposed(const BgFP32Matrix2x2* from, BgFP32Matrix2x2* to) { float tmp = from->r1c2; to->r1c1 = from->r1c1; to->r1c2 = from->r2c1; to->r2c1 = tmp; to->r2c2 = from->r2c2; } static inline void bg_fp64_matrix2x2_set_transposed(const BgFP64Matrix2x2* from, BgFP64Matrix2x2* to) { double tmp = from->r1c2; to->r1c1 = from->r1c1; to->r1c2 = from->r2c1; to->r2c1 = tmp; to->r2c2 = from->r2c2; } // ================ Set Inverted ================ // static inline int bg_fp32_matrix2x2_set_inverted(const BgFP32Matrix2x2* from, BgFP32Matrix2x2* to) { const float determinant = bg_fp32_matrix2x2_get_determinant(from); if (-BG_FP32_EPSYLON <= determinant && determinant <= BG_FP32_EPSYLON) { return 0; } const float r1c1 = from->r2c2; const float r1c2 = -from->r1c2; const float r2c1 = -from->r2c1; const float r2c2 = from->r1c1; to->r1c1 = r1c1 / determinant; to->r1c2 = r1c2 / determinant; to->r2c1 = r2c1 / determinant; to->r2c2 = r2c2 / determinant; return 1; } static inline int bg_fp64_matrix2x2_set_inverted(const BgFP64Matrix2x2* from, BgFP64Matrix2x2* to) { const double determinant = bg_fp64_matrix2x2_get_determinant(from); if (-BG_FP64_EPSYLON <= determinant && determinant <= BG_FP64_EPSYLON) { return 0; } const double r1c1 = from->r2c2; const double r1c2 = -from->r1c2; const double r2c1 = -from->r2c1; const double r2c2 = from->r1c1; to->r1c1 = r1c1 / determinant; to->r1c2 = r1c2 / determinant; to->r2c1 = r2c1 / determinant; to->r2c2 = r2c2 / determinant; return 1; } // ================= Set Row 1 ================== // static inline void bg_fp32_matrix2x2_set_row1(const float c1, const float c2, BgFP32Matrix2x2* matrix) { matrix->r1c1 = c1; matrix->r1c2 = c2; } static inline void bg_fp64_matrix2x2_set_row1(const double c1, const double c2, BgFP64Matrix2x2* matrix) { matrix->r1c1 = c1; matrix->r1c2 = c2; } // ================= Set Row 2 ================== // static inline void bg_fp32_matrix2x2_set_row2(const float c1, const float c2, BgFP32Matrix2x2* matrix) { matrix->r2c1 = c1; matrix->r2c2 = c2; } static inline void bg_fp64_matrix2x2_set_row2(const double c1, const double c2, BgFP64Matrix2x2* matrix) { matrix->r2c1 = c1; matrix->r2c2 = c2; } // ================ Set Column 1 ================ // static inline void bg_fp32_matrix2x2_set_column1(const float r1, const float r2, BgFP32Matrix2x2* matrix) { matrix->r1c1 = r1; matrix->r2c1 = r2; } static inline void bg_fp64_matrix2x2_set_column1(const double r1, const double r2, BgFP64Matrix2x2* matrix) { matrix->r1c1 = r1; matrix->r2c1 = r2; } // ================ Set Column 2 ================ // static inline void bg_fp32_matrix2x2_set_column2(const float r1, const float r2, BgFP32Matrix2x2* matrix) { matrix->r1c2 = r1; matrix->r2c2 = r2; } static inline void bg_fp64_matrix2x2_set_column2(const double r1, const double r2, BgFP64Matrix2x2* matrix) { matrix->r1c2 = r1; matrix->r2c2 = r2; } // ================ Append scaled =============== // static inline void bg_fp32_matrix2x2_append_scaled(BgFP32Matrix2x2* basic_vector, const BgFP32Matrix2x2* scalable_vector, const float scale) { basic_vector->r1c1 += scalable_vector->r1c1 * scale; basic_vector->r1c2 += scalable_vector->r1c2 * scale; basic_vector->r2c1 += scalable_vector->r2c1 * scale; basic_vector->r2c2 += scalable_vector->r2c2 * scale; } static inline void bg_fp64_matrix2x2_append_scaled(BgFP64Matrix2x2* basic_vector, const BgFP64Matrix2x2* scalable_vector, const double scale) { basic_vector->r1c1 += scalable_vector->r1c1 * scale; basic_vector->r1c2 += scalable_vector->r1c2 * scale; basic_vector->r2c1 += scalable_vector->r2c1 * scale; basic_vector->r2c2 += scalable_vector->r2c2 * scale; } // ================== Addition ================== // static inline void bg_fp32_matrix2x2_add(const BgFP32Matrix2x2* matrix1, const BgFP32Matrix2x2* matrix2, BgFP32Matrix2x2* sum) { sum->r1c1 = matrix1->r1c1 + matrix2->r1c1; sum->r1c2 = matrix1->r1c2 + matrix2->r1c2; sum->r2c1 = matrix1->r2c1 + matrix2->r2c1; sum->r2c2 = matrix1->r2c2 + matrix2->r2c2; } static inline void bg_fp64_matrix2x2_add(const BgFP64Matrix2x2* matrix1, const BgFP64Matrix2x2* matrix2, BgFP64Matrix2x2* sum) { sum->r1c1 = matrix1->r1c1 + matrix2->r1c1; sum->r1c2 = matrix1->r1c2 + matrix2->r1c2; sum->r2c1 = matrix1->r2c1 + matrix2->r2c1; sum->r2c2 = matrix1->r2c2 + matrix2->r2c2; } // ================ Subtraction ================= // static inline void bg_fp32_matrix2x2_subtract(const BgFP32Matrix2x2* minuend, const BgFP32Matrix2x2* subtrahend, BgFP32Matrix2x2* difference) { difference->r1c1 = minuend->r1c1 - subtrahend->r1c1; difference->r1c2 = minuend->r1c2 - subtrahend->r1c2; difference->r2c1 = minuend->r2c1 - subtrahend->r2c1; difference->r2c2 = minuend->r2c2 - subtrahend->r2c2; } static inline void bg_fp64_matrix2x2_subtract(const BgFP64Matrix2x2* minuend, const BgFP64Matrix2x2* subtrahend, BgFP64Matrix2x2* difference) { difference->r1c1 = minuend->r1c1 - subtrahend->r1c1; difference->r1c2 = minuend->r1c2 - subtrahend->r1c2; difference->r2c1 = minuend->r2c1 - subtrahend->r2c1; difference->r2c2 = minuend->r2c2 - subtrahend->r2c2; } // =============== Multiplication =============== // static inline void bg_fp32_matrix2x2_multiply(const BgFP32Matrix2x2* multiplicand, const float multiplier, BgFP32Matrix2x2* product) { product->r1c1 = multiplicand->r1c1 * multiplier; product->r1c2 = multiplicand->r1c2 * multiplier; product->r2c1 = multiplicand->r2c1 * multiplier; product->r2c2 = multiplicand->r2c2 * multiplier; } static inline void bg_fp64_matrix2x2_multiply(const BgFP64Matrix2x2* multiplicand, const double multiplier, BgFP64Matrix2x2* product) { product->r1c1 = multiplicand->r1c1 * multiplier; product->r1c2 = multiplicand->r1c2 * multiplier; product->r2c1 = multiplicand->r2c1 * multiplier; product->r2c2 = multiplicand->r2c2 * multiplier; } // ================== Division ================== // static inline void bg_fp32_matrix2x2_divide(const BgFP32Matrix2x2* dividend, const float divisor, BgFP32Matrix2x2* quotient) { quotient->r1c1 = dividend->r1c1 / divisor; quotient->r1c2 = dividend->r1c2 / divisor; quotient->r2c1 = dividend->r2c1 / divisor; quotient->r2c2 = dividend->r2c2 / divisor; } static inline void bg_fp64_matrix2x2_divide(const BgFP64Matrix2x2* dividend, const double divisor, BgFP64Matrix2x2* quotient) { quotient->r1c1 = dividend->r1c1 / divisor; quotient->r1c2 = dividend->r1c2 / divisor; quotient->r2c1 = dividend->r2c1 / divisor; quotient->r2c2 = dividend->r2c2 / divisor; } // ============ Left Vector Product ============= // static inline void bg_fp32_matrix2x2_left_product(const BgFP32Vector2* vector, const BgFP32Matrix2x2* matrix, BgFP32Vector2* result) { bg_fp32_vector2_set_values( vector->x1 * matrix->r1c1 + vector->x2 * matrix->r2c1, vector->x1 * matrix->r1c2 + vector->x2 * matrix->r2c2, result ); } static inline void bg_fp64_matrix2x2_left_product(const BgFP64Vector2* vector, const BgFP64Matrix2x2* matrix, BgFP64Vector2* result) { bg_fp64_vector2_set_values( vector->x1 * matrix->r1c1 + vector->x2 * matrix->r2c1, vector->x1 * matrix->r1c2 + vector->x2 * matrix->r2c2, result ); } // ============ Right Vector Product ============ // static inline void bg_fp32_matrix2x2_right_product(const BgFP32Matrix2x2* matrix, const BgFP32Vector2* vector, BgFP32Vector2* result) { bg_fp32_vector2_set_values( matrix->r1c1 * vector->x1 + matrix->r1c2 * vector->x2, matrix->r2c1 * vector->x1 + matrix->r2c2 * vector->x2, result ); } static inline void bg_fp64_matrix2x2_right_product(const BgFP64Matrix2x2* matrix, const BgFP64Vector2* vector, BgFP64Vector2* result) { bg_fp64_vector2_set_values( matrix->r1c1 * vector->x1 + matrix->r1c2 * vector->x2, matrix->r2c1 * vector->x1 + matrix->r2c2 * vector->x2, result ); } #endif