#ifndef _BGC_QUATERNION_H_ #define _BGC_QUATERNION_H_ #include #include "utilities.h" #include "angle.h" #include "matrix3x3.h" typedef struct { float s0, x1, x2, x3; } BgcQuaternionFP32; typedef struct { double s0, x1, x2, x3; } BgcQuaternionFP64; // ==================== Reset =================== // inline void bgc_quaternion_reset_fp32(BgcQuaternionFP32 * quaternion) { quaternion->s0 = 0.0f; quaternion->x1 = 0.0f; quaternion->x2 = 0.0f; quaternion->x3 = 0.0f; } inline void bgc_quaternion_reset_fp64(BgcQuaternionFP64 * quaternion) { quaternion->s0 = 0.0; quaternion->x1 = 0.0; quaternion->x2 = 0.0; quaternion->x3 = 0.0; } // ================== Set Unit ================== // inline void bgc_quaternion_set_to_identity_fp32(BgcQuaternionFP32 * quaternion) { quaternion->s0 = 1.0f; quaternion->x1 = 0.0f; quaternion->x2 = 0.0f; quaternion->x3 = 0.0f; } inline void bgc_quaternion_set_to_identity_fp64(BgcQuaternionFP64 * quaternion) { quaternion->s0 = 1.0; quaternion->x1 = 0.0; quaternion->x2 = 0.0; quaternion->x3 = 0.0; } // ==================== Set ===================== // inline void bgc_quaternion_set_values_fp32(const float s0, const float x1, const float x2, const float x3, BgcQuaternionFP32 * quaternion) { quaternion->s0 = s0; quaternion->x1 = x1; quaternion->x2 = x2; quaternion->x3 = x3; } inline void bgc_quaternion_set_values_fp64(const double s0, const double x1, const double x2, const double x3, BgcQuaternionFP64 * quaternion) { quaternion->s0 = s0; quaternion->x1 = x1; quaternion->x2 = x2; quaternion->x3 = x3; } // ============= Get Square Modulus ============= // inline float bgc_quaternion_get_square_modulus_fp32(const BgcQuaternionFP32* quaternion) { return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3); } inline double bgc_quaternion_get_square_modulus_fp64(const BgcQuaternionFP64* quaternion) { return (quaternion->s0 * quaternion->s0 + quaternion->x1 * quaternion->x1) + (quaternion->x2 * quaternion->x2 + quaternion->x3 * quaternion->x3); } // ================ Get Modulus ================= // inline float bgc_quaternion_get_modulus_fp32(const BgcQuaternionFP32* quaternion) { return sqrtf(bgc_quaternion_get_square_modulus_fp32(quaternion)); } inline double bgc_quaternion_get_modulus_fp64(const BgcQuaternionFP64* quaternion) { return sqrt(bgc_quaternion_get_square_modulus_fp64(quaternion)); } // ================== Is Zero =================== // inline int bgc_quaternion_is_zero_fp32(const BgcQuaternionFP32* quaternion) { return bgc_quaternion_get_square_modulus_fp32(quaternion) <= BGC_SQUARE_EPSYLON_FP32; } inline int bgc_quaternion_is_zero_fp64(const BgcQuaternionFP64* quaternion) { return bgc_quaternion_get_square_modulus_fp64(quaternion) <= BGC_SQUARE_EPSYLON_FP64; } // ================== Is Unit =================== // inline int bgc_quaternion_is_unit_fp32(const BgcQuaternionFP32* quaternion) { return bgc_is_sqare_unit_fp32(bgc_quaternion_get_square_modulus_fp32(quaternion)); } inline int bgc_quaternion_is_unit_fp64(const BgcQuaternionFP64* quaternion) { return bgc_is_sqare_unit_fp64(bgc_quaternion_get_square_modulus_fp64(quaternion)); } // ==================== Copy ==================== // inline void bgc_quaternion_copy_fp32(const BgcQuaternionFP32* source, BgcQuaternionFP32* destination) { destination->s0 = source->s0; destination->x1 = source->x1; destination->x2 = source->x2; destination->x3 = source->x3; } inline void bgc_quaternion_copy_fp64(const BgcQuaternionFP64* source, BgcQuaternionFP64* destination) { destination->s0 = source->s0; destination->x1 = source->x1; destination->x2 = source->x2; destination->x3 = source->x3; } // ==================== Swap ==================== // inline void bgc_quaternion_swap_fp32(BgcQuaternionFP32* quarternion1, BgcQuaternionFP32* quarternion2) { const float s0 = quarternion2->s0; const float x1 = quarternion2->x1; const float x2 = quarternion2->x2; const float x3 = quarternion2->x3; quarternion2->s0 = quarternion1->s0; quarternion2->x1 = quarternion1->x1; quarternion2->x2 = quarternion1->x2; quarternion2->x3 = quarternion1->x3; quarternion1->s0 = s0; quarternion1->x1 = x1; quarternion1->x2 = x2; quarternion1->x3 = x3; } inline void bgc_quaternion_swap_fp64(BgcQuaternionFP64* quarternion1, BgcQuaternionFP64* quarternion2) { const double s0 = quarternion2->s0; const double x1 = quarternion2->x1; const double x2 = quarternion2->x2; const double x3 = quarternion2->x3; quarternion2->s0 = quarternion1->s0; quarternion2->x1 = quarternion1->x1; quarternion2->x2 = quarternion1->x2; quarternion2->x3 = quarternion1->x3; quarternion1->s0 = s0; quarternion1->x1 = x1; quarternion1->x2 = x2; quarternion1->x3 = x3; } // ================== Convert =================== // inline void bgc_quaternion_convert_fp64_to_fp32(const BgcQuaternionFP64* source, BgcQuaternionFP32* destination) { destination->s0 = (float)source->s0; destination->x1 = (float)source->x1; destination->x2 = (float)source->x2; destination->x3 = (float)source->x3; } inline void bgc_quaternion_convert_fp32_to_fp64(const BgcQuaternionFP32* source, BgcQuaternionFP64* destination) { destination->s0 = source->s0; destination->x1 = source->x1; destination->x2 = source->x2; destination->x3 = source->x3; } // ================= Conjugate ================== // inline void bgc_quaternion_conjugate_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* conjugate) { conjugate->s0 = quaternion->s0; conjugate->x1 = -quaternion->x1; conjugate->x2 = -quaternion->x2; conjugate->x3 = -quaternion->x3; } inline void bgc_quaternion_conjugate_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* conjugate) { conjugate->s0 = quaternion->s0; conjugate->x1 = -quaternion->x1; conjugate->x2 = -quaternion->x2; conjugate->x3 = -quaternion->x3; } // =================== Invert =================== // inline int bgc_quaternion_invert_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* inverted) { const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion); if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float multiplicand = 1.0f / square_modulus; inverted->s0 = quaternion->s0 * multiplicand; inverted->x1 = -quaternion->x1 * multiplicand; inverted->x2 = -quaternion->x2 * multiplicand; inverted->x3 = -quaternion->x3 * multiplicand; return 1; } inline int bgc_quaternion_invert_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* inverted) { const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion); if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double multiplicand = 1.0 / square_modulus; inverted->s0 = quaternion->s0 * multiplicand; inverted->x1 = -quaternion->x1 * multiplicand; inverted->x2 = -quaternion->x2 * multiplicand; inverted->x3 = -quaternion->x3 * multiplicand; return 1; } // ================= Normalize ================== // inline int bgc_quaternion_normalize_fp32(const BgcQuaternionFP32* quaternion, BgcQuaternionFP32* normalized) { const float square_modulus = bgc_quaternion_get_square_modulus_fp32(quaternion); if (bgc_is_sqare_unit_fp32(square_modulus)) { bgc_quaternion_copy_fp32(quaternion, normalized); return 1; } if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float multiplier = sqrtf(1.0f / square_modulus); normalized->s0 = quaternion->s0 * multiplier; normalized->x1 = quaternion->x1 * multiplier; normalized->x2 = quaternion->x2 * multiplier; normalized->x3 = quaternion->x3 * multiplier; return 1; } inline int bgc_quaternion_normalize_fp64(const BgcQuaternionFP64* quaternion, BgcQuaternionFP64* normalized) { const double square_modulus = bgc_quaternion_get_square_modulus_fp64(quaternion); if (bgc_is_sqare_unit_fp64(square_modulus)) { bgc_quaternion_copy_fp64(quaternion, normalized); return 1; } if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double multiplier = sqrt(1.0 / square_modulus); normalized->s0 *= multiplier; normalized->x1 *= multiplier; normalized->x2 *= multiplier; normalized->x3 *= multiplier; return 1; } // ================ Get Product ================= // inline void bgc_quaternion_get_product_fp32(const BgcQuaternionFP32* left, const BgcQuaternionFP32* right, BgcQuaternionFP32* product) { const float s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3); const float x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3); const float x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1); const float x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2); product->s0 = s0; product->x1 = x1; product->x2 = x2; product->x3 = x3; } inline void bgc_quaternion_get_product_fp64(const BgcQuaternionFP64* left, const BgcQuaternionFP64* right, BgcQuaternionFP64* product) { const double s0 = (left->s0 * right->s0 - left->x1 * right->x1) - (left->x2 * right->x2 + left->x3 * right->x3); const double x1 = (left->x1 * right->s0 + left->s0 * right->x1) - (left->x3 * right->x2 - left->x2 * right->x3); const double x2 = (left->x2 * right->s0 + left->s0 * right->x2) - (left->x1 * right->x3 - left->x3 * right->x1); const double x3 = (left->x3 * right->s0 + left->s0 * right->x3) - (left->x2 * right->x1 - left->x1 * right->x2); product->s0 = s0; product->x1 = x1; product->x2 = x2; product->x3 = x3; } // ================= Get Ratio ================== // inline int bgc_quaternion_get_ratio_fp32(const BgcQuaternionFP32* divident, const BgcQuaternionFP32* divisor, BgcQuaternionFP32* quotient) { const float square_modulus = bgc_quaternion_get_square_modulus_fp32(divisor); if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3); const float x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3); const float x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1); const float x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2); const float multiplicand = 1.0f / square_modulus; quotient->s0 = s0 * multiplicand; quotient->x1 = x1 * multiplicand; quotient->x2 = x2 * multiplicand; quotient->x3 = x3 * multiplicand; return 1; } inline int bgc_quaternion_get_ratio_fp64(const BgcQuaternionFP64* divident, const BgcQuaternionFP64* divisor, BgcQuaternionFP64* quotient) { const double square_modulus = bgc_quaternion_get_square_modulus_fp64(divisor); if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double s0 = (divident->s0 * divisor->s0 + divident->x1 * divisor->x1) + (divident->x2 * divisor->x2 + divident->x3 * divisor->x3); const double x1 = (divident->x1 * divisor->s0 + divident->x3 * divisor->x2) - (divident->s0 * divisor->x1 + divident->x2 * divisor->x3); const double x2 = (divident->x2 * divisor->s0 + divident->x1 * divisor->x3) - (divident->s0 * divisor->x2 + divident->x3 * divisor->x1); const double x3 = (divident->x3 * divisor->s0 + divident->x2 * divisor->x1) - (divident->s0 * divisor->x3 + divident->x1 * divisor->x2); const double multiplicand = 1.0 / square_modulus; quotient->s0 = s0 * multiplicand; quotient->x1 = x1 * multiplicand; quotient->x2 = x2 * multiplicand; quotient->x3 = x3 * multiplicand; return 1; } // ==================== Add ===================== // inline void bgc_quaternion_add_fp32(const BgcQuaternionFP32 * quaternion1, const BgcQuaternionFP32 * quaternion2, BgcQuaternionFP32 * sum) { sum->s0 = quaternion1->s0 + quaternion2->s0; sum->x1 = quaternion1->x1 + quaternion2->x1; sum->x2 = quaternion1->x2 + quaternion2->x2; sum->x3 = quaternion1->x3 + quaternion2->x3; } inline void bgc_quaternion_add_fp64(const BgcQuaternionFP64 * quaternion1, const BgcQuaternionFP64 * quaternion2, BgcQuaternionFP64 * sum) { sum->s0 = quaternion1->s0 + quaternion2->s0; sum->x1 = quaternion1->x1 + quaternion2->x1; sum->x2 = quaternion1->x2 + quaternion2->x2; sum->x3 = quaternion1->x3 + quaternion2->x3; } // ================= Add Scaled ================= // inline void bgc_quaternion_add_scaled_fp32(const BgcQuaternionFP32 * basic_quaternion, const BgcQuaternionFP32 * scalable_quaternion, const float scale, BgcQuaternionFP32 * sum) { sum->s0 = basic_quaternion->s0 + scalable_quaternion->s0 * scale; sum->x1 = basic_quaternion->x1 + scalable_quaternion->x1 * scale; sum->x2 = basic_quaternion->x2 + scalable_quaternion->x2 * scale; sum->x3 = basic_quaternion->x3 + scalable_quaternion->x3 * scale; } inline void bgc_quaternion_add_scaled_fp64(const BgcQuaternionFP64 * basic_quaternion, const BgcQuaternionFP64 * scalable_quaternion, const double scale, BgcQuaternionFP64 * sum) { sum->s0 = basic_quaternion->s0 + scalable_quaternion->s0 * scale; sum->x1 = basic_quaternion->x1 + scalable_quaternion->x1 * scale; sum->x2 = basic_quaternion->x2 + scalable_quaternion->x2 * scale; sum->x3 = basic_quaternion->x3 + scalable_quaternion->x3 * scale; } // ================== Subtract ================== // inline void bgc_quaternion_subtract_fp32(const BgcQuaternionFP32 * minuend, const BgcQuaternionFP32 * subtrahend, BgcQuaternionFP32 * difference) { difference->s0 = minuend->s0 - subtrahend->s0; difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; difference->x3 = minuend->x3 - subtrahend->x3; } inline void bgc_quaternion_subtract_fp64(const BgcQuaternionFP64 * minuend, const BgcQuaternionFP64 * subtrahend, BgcQuaternionFP64 * difference) { difference->s0 = minuend->s0 - subtrahend->s0; difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; difference->x3 = minuend->x3 - subtrahend->x3; } // ============== Subtract scaled =============== // inline void bgc_quaternion_subtract_scaled_fp32(const BgcQuaternionFP32 * basic_quaternion, const BgcQuaternionFP32 * scalable_quaternion, const float scale, BgcQuaternionFP32 * difference) { difference->s0 = basic_quaternion->s0 - scalable_quaternion->s0 * scale; difference->x1 = basic_quaternion->x1 - scalable_quaternion->x1 * scale; difference->x2 = basic_quaternion->x2 - scalable_quaternion->x2 * scale; difference->x3 = basic_quaternion->x3 - scalable_quaternion->x3 * scale; } inline void bgc_quaternion_subtract_scaled_fp64(const BgcQuaternionFP64 * basic_quaternion, const BgcQuaternionFP64 * scalable_quaternion, const double scale, BgcQuaternionFP64 * difference) { difference->s0 = basic_quaternion->s0 - scalable_quaternion->s0 * scale; difference->x1 = basic_quaternion->x1 - scalable_quaternion->x1 * scale; difference->x2 = basic_quaternion->x2 - scalable_quaternion->x2 * scale; difference->x3 = basic_quaternion->x3 - scalable_quaternion->x3 * scale; } // ================== Multiply ================== // inline void bgc_quaternion_multiply_fp32(const BgcQuaternionFP32* multiplicand, const float multipier, BgcQuaternionFP32* product) { product->s0 = multiplicand->s0 * multipier; product->x1 = multiplicand->x1 * multipier; product->x2 = multiplicand->x2 * multipier; product->x3 = multiplicand->x3 * multipier; } inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* multiplicand, const double multipier, BgcQuaternionFP64* product) { product->s0 = multiplicand->s0 * multipier; product->x1 = multiplicand->x1 * multipier; product->x2 = multiplicand->x2 * multipier; product->x3 = multiplicand->x3 * multipier; } // =================== Divide =================== // inline void bgc_quaternion_divide_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient) { bgc_quaternion_multiply_fp32(dividend, 1.0f / divisor, quotient); } inline void bgc_quaternion_divide_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient) { bgc_quaternion_multiply_fp64(dividend, 1.0 / divisor, quotient); } // =================== Linear =================== // inline void bgc_quaternion_get_linear_interpolation_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2, const float phase, BgcQuaternionFP32* interpolation) { const float counterphase = 1.0f - phase; interpolation->s0 = quaternion1->s0 * counterphase + quaternion2->s0 * phase; interpolation->x1 = quaternion1->x1 * counterphase + quaternion2->x1 * phase; interpolation->x2 = quaternion1->x2 * counterphase + quaternion2->x2 * phase; interpolation->x3 = quaternion1->x3 * counterphase + quaternion2->x3 * phase; } inline void bgc_quaternion_get_linear_interpolation_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2, const double phase, BgcQuaternionFP64* interpolation) { const double counterphase = 1.0 - phase; interpolation->s0 = quaternion1->s0 * counterphase + quaternion2->s0 * phase; interpolation->x1 = quaternion1->x1 * counterphase + quaternion2->x1 * phase; interpolation->x2 = quaternion1->x2 * counterphase + quaternion2->x2 * phase; interpolation->x3 = quaternion1->x3 * counterphase + quaternion2->x3 * phase; } // ============ Get Rotation Matrix ============= // inline int bgc_quaternion_get_rotation_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation) { const float s0s0 = quaternion->s0 * quaternion->s0; const float x1x1 = quaternion->x1 * quaternion->x1; const float x2x2 = quaternion->x2 * quaternion->x2; const float x3x3 = quaternion->x3 * quaternion->x3; const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float corrector1 = 1.0f / square_modulus; const float s0x1 = quaternion->s0 * quaternion->x1; const float s0x2 = quaternion->s0 * quaternion->x2; const float s0x3 = quaternion->s0 * quaternion->x3; const float x1x2 = quaternion->x1 * quaternion->x2; const float x1x3 = quaternion->x1 * quaternion->x3; const float x2x3 = quaternion->x2 * quaternion->x3; const float corrector2 = 2.0f * corrector1; rotation->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); rotation->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); rotation->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); rotation->r1c2 = corrector2 * (x1x2 - s0x3); rotation->r2c3 = corrector2 * (x2x3 - s0x1); rotation->r3c1 = corrector2 * (x1x3 - s0x2); rotation->r2c1 = corrector2 * (x1x2 + s0x3); rotation->r3c2 = corrector2 * (x2x3 + s0x1); rotation->r1c3 = corrector2 * (x1x3 + s0x2); return 1; } inline int bgc_quaternion_get_rotation_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation) { const double s0s0 = quaternion->s0 * quaternion->s0; const double x1x1 = quaternion->x1 * quaternion->x1; const double x2x2 = quaternion->x2 * quaternion->x2; const double x3x3 = quaternion->x3 * quaternion->x3; const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double corrector1 = 1.0f / square_modulus; const double s0x1 = quaternion->s0 * quaternion->x1; const double s0x2 = quaternion->s0 * quaternion->x2; const double s0x3 = quaternion->s0 * quaternion->x3; const double x1x2 = quaternion->x1 * quaternion->x2; const double x1x3 = quaternion->x1 * quaternion->x3; const double x2x3 = quaternion->x2 * quaternion->x3; const double corrector2 = 2.0f * corrector1; rotation->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); rotation->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); rotation->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); rotation->r1c2 = corrector2 * (x1x2 - s0x3); rotation->r2c3 = corrector2 * (x2x3 - s0x1); rotation->r3c1 = corrector2 * (x1x3 - s0x2); rotation->r2c1 = corrector2 * (x1x2 + s0x3); rotation->r3c2 = corrector2 * (x2x3 + s0x1); rotation->r1c3 = corrector2 * (x1x3 + s0x2); return 1; } // ============= Get Reverse Matrix ============= // inline int bgc_quaternion_get_reverse_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* reverse) { const float s0s0 = quaternion->s0 * quaternion->s0; const float x1x1 = quaternion->x1 * quaternion->x1; const float x2x2 = quaternion->x2 * quaternion->x2; const float x3x3 = quaternion->x3 * quaternion->x3; const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) { return 0; } const float corrector1 = 1.0f / square_modulus; const float s0x1 = quaternion->s0 * quaternion->x1; const float s0x2 = quaternion->s0 * quaternion->x2; const float s0x3 = quaternion->s0 * quaternion->x3; const float x1x2 = quaternion->x1 * quaternion->x2; const float x1x3 = quaternion->x1 * quaternion->x3; const float x2x3 = quaternion->x2 * quaternion->x3; const float corrector2 = 2.0f * corrector1; reverse->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); reverse->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); reverse->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); reverse->r1c2 = corrector2 * (x1x2 + s0x3); reverse->r2c3 = corrector2 * (x2x3 + s0x1); reverse->r3c1 = corrector2 * (x1x3 + s0x2); reverse->r2c1 = corrector2 * (x1x2 - s0x3); reverse->r3c2 = corrector2 * (x2x3 - s0x1); reverse->r1c3 = corrector2 * (x1x3 - s0x2); return 1; } inline int bgc_quaternion_get_reverse_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* reverse) { const double s0s0 = quaternion->s0 * quaternion->s0; const double x1x1 = quaternion->x1 * quaternion->x1; const double x2x2 = quaternion->x2 * quaternion->x2; const double x3x3 = quaternion->x3 * quaternion->x3; const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3); if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) { return 0; } const double corrector1 = 1.0f / square_modulus; const double s0x1 = quaternion->s0 * quaternion->x1; const double s0x2 = quaternion->s0 * quaternion->x2; const double s0x3 = quaternion->s0 * quaternion->x3; const double x1x2 = quaternion->x1 * quaternion->x2; const double x1x3 = quaternion->x1 * quaternion->x3; const double x2x3 = quaternion->x2 * quaternion->x3; const double corrector2 = 2.0f * corrector1; reverse->r1c1 = corrector1 * ((s0s0 + x1x1) - (x2x2 + x3x3)); reverse->r2c2 = corrector1 * ((s0s0 + x2x2) - (x1x1 + x3x3)); reverse->r3c3 = corrector1 * ((s0s0 + x3x3) - (x1x1 + x2x2)); reverse->r1c2 = corrector2 * (x1x2 + s0x3); reverse->r2c3 = corrector2 * (x2x3 + s0x1); reverse->r3c1 = corrector2 * (x1x3 + s0x2); reverse->r2c1 = corrector2 * (x1x2 - s0x3); reverse->r3c2 = corrector2 * (x2x3 - s0x1); reverse->r1c3 = corrector2 * (x1x3 - s0x2); return 1; } inline int bgc_quaternion_get_both_matrixes_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse) { if (bgc_quaternion_get_reverse_matrix_fp32(quaternion, reverse)) { bgc_matrix3x3_transpose_fp32(reverse, rotation); return 1; } return 0; } inline int bgc_quaternion_get_both_matrixes_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse) { if (bgc_quaternion_get_reverse_matrix_fp64(quaternion, reverse)) { bgc_matrix3x3_transpose_fp64(reverse, rotation); return 1; } return 0; } // ================== Are Close ================= // inline int bgc_quaternion_are_close_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2) { const float ds0 = quaternion1->s0 - quaternion2->s0; const float dx1 = quaternion1->x1 - quaternion2->x1; const float dx2 = quaternion1->x2 - quaternion2->x2; const float dx3 = quaternion1->x3 - quaternion2->x3; const float square_modulus1 = bgc_quaternion_get_square_modulus_fp32(quaternion1); const float square_modulus2 = bgc_quaternion_get_square_modulus_fp32(quaternion2); const float square_distance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3); if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32) { return square_distance <= BGC_SQUARE_EPSYLON_FP32; } return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2; } inline int bgc_quaternion_are_close_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2) { const double ds0 = quaternion1->s0 - quaternion2->s0; const double dx1 = quaternion1->x1 - quaternion2->x1; const double dx2 = quaternion1->x2 - quaternion2->x2; const double dx3 = quaternion1->x3 - quaternion2->x3; const double square_modulus1 = bgc_quaternion_get_square_modulus_fp64(quaternion1); const double square_modulus2 = bgc_quaternion_get_square_modulus_fp64(quaternion2); const double square_distance = (ds0 * ds0 + dx1 * dx1) + (dx2 * dx2 + dx3 * dx3); if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64) { return square_distance <= BGC_SQUARE_EPSYLON_FP64; } return square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP64 * square_modulus2; } #endif