#ifndef _BASIC_GEOMETRY_VECTOR2_H_ #define _BASIC_GEOMETRY_VECTOR2_H_ #include "basis.h" #include "angle.h" #include typedef struct { float x1, x2; } vector2_fp32_t; typedef struct { double x1, x2; } vector2_fp64_t; // =================== Reset ==================== // inline void vector2_reset_fp32(vector2_fp32_t* vector) { vector->x1 = 0.0f; vector->x2 = 0.0f; } inline void vector2_reset_fp64(vector2_fp64_t* vector) { vector->x1 = 0.0; vector->x2 = 0.0; } // ==================== Set ===================== // inline void vector2_set_values_fp32(const float x1, const float x2, vector2_fp32_t* to) { to->x1 = x1; to->x2 = x2; } inline void vector2_set_values_fp64(const double x1, const double x2, vector2_fp64_t* to) { to->x1 = x1; to->x2 = x2; } // ==================== Copy ==================== // inline void vector2_copy_fp32(const vector2_fp32_t* from, vector2_fp32_t* to) { to->x1 = from->x1; to->x2 = from->x2; } inline void vector2_copy_fp64(const vector2_fp64_t* from, vector2_fp64_t* to) { to->x1 = from->x1; to->x2 = from->x2; } // ==================== Swap ==================== // inline void vector2_swap_fp32(vector2_fp32_t* vector1, vector2_fp32_t* vector2) { const float x1 = vector2->x1; const float x2 = vector2->x2; vector2->x1 = vector1->x1; vector2->x2 = vector1->x2; vector1->x1 = x1; vector1->x2 = x2; } inline void vector2_swap_fp64(vector2_fp64_t* vector1, vector2_fp64_t* vector2) { const double x1 = vector2->x1; const double x2 = vector2->x2; vector2->x1 = vector1->x1; vector2->x2 = vector1->x2; vector1->x1 = x1; vector1->x2 = x2; } // ============= Copy to twin type ============== // inline void vector2_convert_fp64_to_fp32(const vector2_fp64_t* from, vector2_fp32_t* to) { to->x1 = (float)from->x1; to->x2 = (float)from->x2; } inline void vector2_convert_fp32_to_fp64(const vector2_fp32_t* from, vector2_fp64_t* to) { to->x1 = from->x1; to->x2 = from->x2; } // =================== Reverse ================== // inline void vector2_fp32_set_reverse(const vector2_fp32_t* from, vector2_fp32_t* to) { to->x1 = -from->x1; to->x2 = -from->x2; } inline void vector2_fp64_set_reverse(const vector2_fp64_t* from, vector2_fp64_t* to) { to->x1 = -from->x1; to->x2 = -from->x2; } // ============= Reverse twin type ============== // inline void vector2_fp32_set_reverse_fp64(const vector2_fp64_t* from, vector2_fp32_t* to) { to->x1 = (float) -from->x1; to->x2 = (float) -from->x2; } inline void vector2_fp64_set_reverse_fp32(const vector2_fp32_t* from, vector2_fp64_t* to) { to->x1 = -from->x1; to->x2 = -from->x2; } // =================== Module =================== // inline float vector2_get_square_modulus_fp32(const vector2_fp32_t* vector) { return vector->x1 * vector->x1 + vector->x2 * vector->x2; } inline double vector2_get_square_modulus_fp64(const vector2_fp64_t* vector) { return vector->x1 * vector->x1 + vector->x2 * vector->x2; } inline float vector2_get_modulus_fp32(const vector2_fp32_t* vector) { return sqrtf(vector2_get_square_modulus_fp32(vector)); } inline double vector2_get_modulus_fp64(const vector2_fp64_t* vector) { return sqrt(vector2_get_square_modulus_fp64(vector)); } // ================= Comparison ================= // inline int vector2_fp32_is_zero(const vector2_fp32_t* vector) { return vector2_get_square_modulus_fp32(vector) <= FP32_SQUARE_EPSYLON; } inline int vector2_fp64_is_zero(const vector2_fp64_t* vector) { return vector2_get_square_modulus_fp64(vector) <= FP64_SQUARE_EPSYLON; } inline int vector2_fp32_is_unit(const vector2_fp32_t* vector) { const float square_modulus = vector2_get_square_modulus_fp32(vector); return 1.0f - FP32_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + FP32_TWO_EPSYLON; } inline int vector2_fp64_is_unit(const vector2_fp64_t* vector) { const double square_modulus = vector2_get_square_modulus_fp64(vector); return 1.0f - FP64_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + FP64_TWO_EPSYLON; } // ==================== Add ===================== // inline void vector2_add_fp32(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2, vector2_fp32_t* sum) { sum->x1 = vector1->x1 + vector2->x1; sum->x2 = vector1->x2 + vector2->x2; } inline void vector2_add_fp64(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2, vector2_fp64_t* sum) { sum->x1 = vector1->x1 + vector2->x1; sum->x2 = vector1->x2 + vector2->x2; } // ================ Subtraction ================= // inline void vector2_subtract_fp32(const vector2_fp32_t* minuend, const vector2_fp32_t* subtrahend, vector2_fp32_t* difference) { difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; } inline void vector2_subtract_fp64(const vector2_fp64_t* minuend, const vector2_fp64_t* subtrahend, vector2_fp64_t* difference) { difference->x1 = minuend->x1 - subtrahend->x1; difference->x2 = minuend->x2 - subtrahend->x2; } // =============== Multiplication =============== // inline void vector2_multiply_fp32(const vector2_fp32_t* multiplicand, const float multiplier, vector2_fp32_t* product) { product->x1 = multiplicand->x1 * multiplier; product->x2 = multiplicand->x2 * multiplier; } inline void vector2_multiply_fp64(const vector2_fp64_t* multiplicand, const double multiplier, vector2_fp64_t* product) { product->x1 = multiplicand->x1 * multiplier; product->x2 = multiplicand->x2 * multiplier; } // ================== Division ================== // inline void vector2_divide_fp32(const vector2_fp32_t* dividend, const float divisor, vector2_fp32_t* quotient) { vector2_multiply_fp32(dividend, 1.0f / divisor, quotient); } inline void vector2_fp64_divide(const vector2_fp64_t* dividend, const double divisor, vector2_fp64_t* quotient) { vector2_multiply_fp64(dividend, 1.0 / divisor, quotient); } // ================ Append scaled =============== // inline void vector2_add_scaled_fp32(vector2_fp32_t* basic_vector, const vector2_fp32_t* scalable_vector, const float scale) { basic_vector->x1 += scalable_vector->x1 * scale; basic_vector->x2 += scalable_vector->x2 * scale; } inline void vector2_add_scaled_fp64(vector2_fp64_t* basic_vector, const vector2_fp64_t* scalable_vector, const double scale) { basic_vector->x1 += scalable_vector->x1 * scale; basic_vector->x2 += scalable_vector->x2 * scale; } // ================== Average2 ================== // inline void vector2_fp32_get_mean2(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2, vector2_fp32_t* result) { result->x1 = (vector1->x1 + vector2->x1) * 0.5f; result->x2 = (vector1->x2 + vector2->x2) * 0.5f; } inline void vector2_fp64_get_mean2(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2, vector2_fp64_t* result) { result->x1 = (vector1->x1 + vector2->x1) * 0.5; result->x2 = (vector1->x2 + vector2->x2) * 0.5; } // ================== Average3 ================== // inline void vector2_fp32_get_mean3(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2, const vector2_fp32_t* vector3, vector2_fp32_t* result) { result->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * FP32_ONE_THIRD; result->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * FP32_ONE_THIRD; } inline void vector2_fp64_get_mean3(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2, const vector2_fp64_t* vector3, vector2_fp64_t* result) { result->x1 = (vector1->x1 + vector2->x1 + vector3->x1) * FP64_ONE_THIRD; result->x2 = (vector1->x2 + vector2->x2 + vector3->x2) * FP64_ONE_THIRD; } // =============== Scalar Product =============== // inline float vector2_fp32_scalar_product(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2) { return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2; } inline double vector2_fp64_scalar_product(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2) { return vector1->x1 * vector2->x1 + vector1->x2 * vector2->x2; } // =============== Cross Product ================ // inline float vector2_fp32_cross_product(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2) { return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1; } inline double vector2_fp64_cross_product(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2) { return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1; } // ============== Complex Product =============== // inline void vector2_fp32_complex_product(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2, vector2_fp32_t* result) { const float x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2; const float x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1; result->x1 = x1; result->x2 = x2; } inline void vector2_fp64_complex_product(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2, vector2_fp64_t* result) { const double x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2; const double x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1; result->x1 = x1; result->x2 = x2; } // =============== Normalization ================ // inline int vector2_normalize_fp32(vector2_fp32_t* vector) { const float square_modulus = vector2_get_square_modulus_fp32(vector); if (1.0f - FP32_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0f + FP32_TWO_EPSYLON) { return 1; } if (square_modulus <= FP32_SQUARE_EPSYLON) { vector2_reset_fp32(vector); return 0; } vector2_multiply_fp32(vector, sqrtf(1.0f / square_modulus), vector); return 1; } inline int vector2_normalize_fp64(vector2_fp64_t* vector) { const double square_modulus = vector2_get_square_modulus_fp64(vector); if (1.0 - FP64_TWO_EPSYLON <= square_modulus && square_modulus <= 1.0 + FP64_TWO_EPSYLON) { return 1; } if (square_modulus <= FP64_SQUARE_EPSYLON) { vector2_reset_fp64(vector); return 0; } vector2_multiply_fp64(vector, sqrt(1.0 / square_modulus), vector); return 1; } // =============== Get Normalized =============== // inline int vector2_fp32_set_normalized(const vector2_fp32_t* vector, vector2_fp32_t* result) { vector2_copy_fp32(vector, result); return vector2_normalize_fp32(result); } inline int vector2_fp64_set_normalized(const vector2_fp64_t* vector, vector2_fp64_t* result) { vector2_copy_fp64(vector, result); return vector2_normalize_fp64(result); } // =================== Angle ==================== // float vector2_get_angle_fp32(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2, const angle_unit_t unit); double vector2_get_angle_fp64(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2, const angle_unit_t unit); // =============== Square Distance ============== // inline float vector2_get_square_distance_fp32(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2) { const float dx1 = (vector1->x1 - vector2->x1); const float dx2 = (vector1->x2 - vector2->x2); return dx1 * dx1 + dx2 * dx2; } inline double vector2_get_square_distance_fp64(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2) { const double dx1 = (vector1->x1 - vector2->x1); const double dx2 = (vector1->x2 - vector2->x2); return dx1 * dx1 + dx2 * dx2; } // ================== Distance ================== // inline float vector2_get_distance_fp32(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2) { return sqrtf(vector2_get_square_distance_fp32(vector1, vector2)); } inline double vector2_get_distance_fp64(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2) { return sqrt(vector2_get_square_distance_fp64(vector1, vector2)); } // ================== Are Equal ================= // inline int vector2_are_equal_fp32(const vector2_fp32_t* vector1, const vector2_fp32_t* vector2) { const float square_modulus1 = vector2_get_square_modulus_fp32(vector1); const float square_modulus2 = vector2_get_square_modulus_fp32(vector2); const float square_modulus3 = vector2_get_square_distance_fp32(vector1, vector2); // 2.0f means dimension amount if (square_modulus1 < FP32_EPSYLON_EFFECTIVENESS_LIMIT || square_modulus2 < FP32_EPSYLON_EFFECTIVENESS_LIMIT) { return square_modulus3 < (2.0f * FP32_SQUARE_EPSYLON); } if (square_modulus1 <= square_modulus2) { return square_modulus3 <= (2.0f * FP32_SQUARE_EPSYLON) * square_modulus2; } return square_modulus3 <= (2.0f * FP32_SQUARE_EPSYLON) * square_modulus1; } inline int vector2_are_equal_fp64(const vector2_fp64_t* vector1, const vector2_fp64_t* vector2) { const double square_modulus1 = vector2_get_square_modulus_fp64(vector1); const double square_modulus2 = vector2_get_square_modulus_fp64(vector2); const double square_modulus3 = vector2_get_square_distance_fp64(vector1, vector2); // 2.0 means dimension amount if (square_modulus1 < FP64_EPSYLON_EFFECTIVENESS_LIMIT || square_modulus2 < FP64_EPSYLON_EFFECTIVENESS_LIMIT) { return square_modulus3 < (2.0 * FP64_SQUARE_EPSYLON); } if (square_modulus1 <= square_modulus2) { return square_modulus3 <= (2.0 * FP64_SQUARE_EPSYLON) * square_modulus2; } return square_modulus3 <= (2.0 * FP64_SQUARE_EPSYLON) * square_modulus1; } #endif