#include "./slerp.h" extern inline void bgc_fp32_slerp_reset(BGC_FP32_Slerp* slerp); extern inline void bgc_fp64_slerp_reset(BGC_FP64_Slerp* slerp); extern inline void bgc_fp32_slerp_make_full(BGC_FP32_Slerp* slerp, const BGC_FP32_Versor* start, const BGC_FP32_Versor* end); extern inline void bgc_fp64_slerp_make_full(BGC_FP64_Slerp* slerp, const BGC_FP64_Versor* start, const BGC_FP64_Versor* end); extern inline void bgc_fp32_slerp_make_shortened(BGC_FP32_Slerp* slerp, const BGC_FP32_Versor* start, const BGC_FP32_Versor* end); extern inline void bgc_fp64_slerp_make_shortened(BGC_FP64_Slerp* slerp, const BGC_FP64_Versor* start, const BGC_FP64_Versor* end); extern inline void bgc_fp32_slerp_get_phase_versor(BGC_FP32_Versor* versor, const BGC_FP32_Slerp* slerp, const float phase); extern inline void bgc_fp64_slerp_get_phase_versor(BGC_FP64_Versor* versor, const BGC_FP64_Slerp* slerp, const double phase); void bgc_fp32_slerp_make(BGC_FP32_Slerp* slerp, const BGC_FP32_Versor* start, const BGC_FP32_Versor* augment) { const float square_vector = augment->_x1 * augment->_x1 + augment->_x2 * augment->_x2 + augment->_x3 * augment->_x3; if (square_vector != square_vector) { bgc_fp32_slerp_reset(slerp); return; } if (square_vector <= BGC_FP32_SQUARE_EPSYLON) { slerp->s0_cos_weight = start->_s0; slerp->x1_cos_weight = start->_x1; slerp->x2_cos_weight = start->_x2; slerp->x3_cos_weight = start->_x3; slerp->s0_sin_weight = 0.0f; slerp->x1_sin_weight = 0.0f; slerp->x2_sin_weight = 0.0f; slerp->x3_sin_weight = 0.0f; slerp->radians = 0.0f; return; } const float vector_modulus = sqrtf(square_vector); slerp->radians = atan2f(vector_modulus, augment->_s0); const float multiplier = 1.0f / vector_modulus; slerp->s0_cos_weight = start->_s0; slerp->x1_cos_weight = start->_x1; slerp->x2_cos_weight = start->_x2; slerp->x3_cos_weight = start->_x3; slerp->s0_sin_weight = -multiplier * (augment->_x1 * start->_x1 + augment->_x2 * start->_x2 + augment->_x3 * start->_x3); slerp->x1_sin_weight = multiplier * (augment->_x1 * start->_s0 + augment->_x2 * start->_x3 - augment->_x3 * start->_x2); slerp->x2_sin_weight = multiplier * (augment->_x2 * start->_s0 - augment->_x1 * start->_x3 + augment->_x3 * start->_x1); slerp->x3_sin_weight = multiplier * (augment->_x3 * start->_s0 - augment->_x2 * start->_x1 + augment->_x1 * start->_x2); } void bgc_fp64_slerp_make(BGC_FP64_Slerp* slerp, const BGC_FP64_Versor* start, const BGC_FP64_Versor* augment) { const double square_vector = augment->_x1 * augment->_x1 + augment->_x2 * augment->_x2 + augment->_x3 * augment->_x3; if (square_vector != square_vector) { bgc_fp64_slerp_reset(slerp); return; } if (square_vector <= BGC_FP64_SQUARE_EPSYLON) { slerp->s0_cos_weight = start->_s0; slerp->x1_cos_weight = start->_x1; slerp->x2_cos_weight = start->_x2; slerp->x3_cos_weight = start->_x3; slerp->s0_sin_weight = 0.0; slerp->x1_sin_weight = 0.0; slerp->x2_sin_weight = 0.0; slerp->x3_sin_weight = 0.0; slerp->radians = 0.0; return; } const double vector_modulus = sqrt(square_vector); slerp->radians = atan2(vector_modulus, augment->_s0); const double multiplier = 1.0 / vector_modulus; slerp->s0_cos_weight = start->_s0; slerp->x1_cos_weight = start->_x1; slerp->x2_cos_weight = start->_x2; slerp->x3_cos_weight = start->_x3; slerp->s0_sin_weight = -multiplier * (augment->_x1 * start->_x1 + augment->_x2 * start->_x2 + augment->_x3 * start->_x3); slerp->x1_sin_weight = multiplier * (augment->_x1 * start->_s0 + augment->_x2 * start->_x3 - augment->_x3 * start->_x2); slerp->x2_sin_weight = multiplier * (augment->_x2 * start->_s0 - augment->_x1 * start->_x3 + augment->_x3 * start->_x1); slerp->x3_sin_weight = multiplier * (augment->_x3 * start->_s0 - augment->_x2 * start->_x1 + augment->_x1 * start->_x2); }