Compare commits

..

10 commits

Author SHA1 Message Date
2a4d5522d3 Добавление функций определения поворотов (versor) между направлениями и базисами 2025-06-04 23:47:55 +07:00
e6a94ab8d9 Добавление базисов как вспомогательной структуры 2025-03-21 03:34:20 +07:00
9d7011e81e Добавление сферической интерполяции, переход от применения acos к применению atan2, исправление ошибок 2025-03-17 09:56:56 +07:00
f06b35ae34 Модульные тесты для арифметических операций с векторами и комплексными числами 2025-03-13 02:41:21 +07:00
2e902bc040 Операция исключения поворота для двумерного пространства (числа Котса) 2025-03-11 01:44:08 +07:00
0a1ca06ce5 Операция исключения поворота 2025-03-11 01:39:35 +07:00
Andrey Pokidov
9688bd2fc1 Исправление модульного теста 2025-02-27 20:42:45 +07:00
f85039a556 Тесты для комплексных чисел, исправление в файле проекта для Visual Studio 2025-02-27 00:37:44 +07:00
Andrey Pokidov
1b0fd7ef26 Добавлен makefile для библиотеки 2025-02-26 19:52:36 +07:00
Andrey Pokidov
74be89f1f8 Переименование tangent pair в числа Котса, выделение комплексных чисел из двумерных векторов, добавление возведения в спебень для веросорв и чисел Котса 2025-02-26 16:27:33 +07:00
56 changed files with 4768 additions and 723 deletions

View file

@ -53,12 +53,12 @@ structure_fp32_t* make_structures(const unsigned int amount)
void print_versor_fp32(const BgcVersorFP32* versor)
{
printf("Versor (%f, %f, %f, %f)\n", versor->s0, versor->x1, versor->x2, versor->x3);
printf("Versor (s0 = %0.12f, x1 = %0.12f, x2 = %0.12f, x3 = %0.12f)\n", versor->s0, versor->x1, versor->x2, versor->x3);
}
void print_versor_fp64(const BgcVersorFP64* versor)
{
printf("Versor (%lf, %lf, %lf, %lf)\n", versor->s0, versor->x1, versor->x2, versor->x3);
printf("Versor (s0 = %0.20f, x1 = %0.20f, x2 = %0.20f, x3 = %0.20f)\n", versor->s0, versor->x1, versor->x2, versor->x3);
}
void print_vector_fp32(const BgcVector3FP32* vector)
@ -79,7 +79,7 @@ void list_work(const uint_fast32_t amount, structure_fp32_t* list)
}
}
}
/*
int main()
{
const unsigned int amount = 1000000;
@ -121,3 +121,369 @@ int main()
return 0;
}
*/
/*
int main() {
BgcComplexFP32 complex, exponent, result;
bgc_complex_set_values_fp32(0, 1, &complex);
bgc_complex_set_values_fp32(4, 0, &exponent);
bgc_complex_get_exponation_fp32(&complex, exponent.real, exponent.imaginary, &result);
printf("(%f, %f) ^ (%f, %f) = (%f, %f)\n", complex.real, complex.imaginary, exponent.real, exponent.imaginary, result.real, result.imaginary);
return 0;
}
*/
/*
int main() {
BgcVersorFP32 start = { 1.0f, 0.0f, 0.0f, 0.0f };
BgcVersorFP32 end = { 0.0f, 1.0f, 0.0f, 0.0f };
BgcVersorFP32 result;
bgc_versor_spherical_interpolation_fp32(&start, &end, 0.5f, &result);
printf("Result: %0.12f, %0.12f, %0.12f, %0.12f\n", result.s0, result.x1, result.x2, result.x3);
return 0;
}
*/
void test_basis_difference_fp32()
{
BgcVector3FP32 initial_primary, initial_auxiliary;
BgcVector3FP32 final_primary, final_auxiliary;
BgcVersorFP32 turn;
// No turn
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nNo turn:\n");
print_versor_fp32(&turn);
// Turn around (1, 1, 0) axis on 180 degrees
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nTurn around (1, 1, 0) axis on 180 degrees:\n");
print_versor_fp32(&turn);
// 180 degree turn
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(-1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n180 degree turn around (0, 1, 0):\n");
print_versor_fp32(&turn);
// 90 degree turn around x3 axis
bgc_vector3_set_values_fp32(2.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 3.1f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 10.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n90 degree turn around (0, 0, 1):\n");
print_versor_fp32(&turn);
// Unorthogonal pairs turn at 90 degrees around x3 axis
bgc_vector3_set_values_fp32(2.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(-2.0f, 3.1f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 10.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-1.0f, 5.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nUnorthogonal pairs turn at 90 degrees around (0, 0, 1):\n");
print_versor_fp32(&turn);
// Zero vectors
bgc_vector3_set_values_fp32(0.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
int code;
code = bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nZero vectors: this cannot be!\n");
print_versor_fp32(&turn);
}
else {
printf("\nZero vector validation works fine\n");
}
// Parallel vectors
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(2.0f, 0.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
code = bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nParallel vectors: this cannot be!\n");
print_versor_fp32(&turn);
}
else {
printf("\nParallelism validation works fine\n");
}
// Small angle turn (about 1 degree):
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.999848f, 0.017452f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-0.017452f, 0.999848f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nSmall angle turn (about 1 degree):\n");
print_versor_fp32(&turn);
// About 179 degrees turn
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(-0.999848f, -0.017452f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.017452f, -0.999848f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 179 degrees turn:\n");
print_versor_fp32(&turn);
// 120 degrees around (-1, -1, 1)
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 0.0f, -1.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n120 degees turn:\n");
print_versor_fp32(&turn);
// About 1 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.999848f, 0.017452f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 1 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp32(&turn);
// About 0.01 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(1.0f, 0.000001f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, -1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 0.01 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp32(&turn);
}
void test_basis_difference_fp64()
{
BgcVector3FP64 initial_primary, initial_auxiliary;
BgcVector3FP64 final_primary, final_auxiliary;
BgcVersorFP64 turn;
// No turn
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nNo turn:\n");
print_versor_fp64(&turn);
// Turn around (1, 1, 0) axis on 180 degrees
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nTurn around (1, 1, 0) axis on 180 degrees:\n");
print_versor_fp64(&turn);
// 180 degree turn
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(-1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n180 degree turn around (0, 1, 0):\n");
print_versor_fp64(&turn);
// 90 degree turn around x3 axis
bgc_vector3_set_values_fp64(2.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 3.1, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 10.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n90 degree turn around (0, 0, 1):\n");
print_versor_fp64(&turn);
// Unorthogonal pairs turn at 90 degrees around x3 axis
bgc_vector3_set_values_fp64(2.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(-2.0, 3.1, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 10.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-1.0, 5.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nUnorthogonal pairs turn at 90 degrees around (0, 0, 1):\n");
print_versor_fp64(&turn);
// Zero vectors
bgc_vector3_set_values_fp64(0.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
int code;
code = bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nZero vectors: this cannot be!\n");
print_versor_fp64(&turn);
}
else {
printf("\nZero vector validation works fine\n");
}
// Parallel vectors
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(2.0, 0.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
code = bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nParallel vectors: this cannot be!\n");
print_versor_fp64(&turn);
}
else {
printf("\nParallelism validation works fine\n");
}
// Small angle turn (about 1 degree):
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.999848, 0.017452, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-0.017452, 0.999848, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nSmall angle turn (about 1 degree):\n");
print_versor_fp64(&turn);
// About 179 degrees turn
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(-0.999848, -0.017452, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.017452, -0.999848, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 179 degrees turn:\n");
print_versor_fp64(&turn);
// 120 degrees around (-1, -1, 1)
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 0.0, -1.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n120 degees turn:\n");
print_versor_fp64(&turn);
// About 1 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.999848, 0.017452, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 1 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp64(&turn);
// About 0.001 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(1.0, 0.000001, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, -1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 0.01 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp64(&turn);
}
int main()
{
//BgcVersorFP32 start = { 1.0f, 0.0f, 0.0f, 0.0f };
//BgcVersorFP32 end = { 0.0f, 1.0f, 0.0f, 0.0f };
/*
BgcVersorFP32 start = { 1.0f, 0.0f, 0.0f, 0.0f };
BgcVersorFP32 end = { 0.9999f, 0.01414f, 0.0f, 0.0f };
BgcSlerpFP32 slerp;
BgcVersorFP32 result;
bgc_slerp_make_fp32(&start, &end, &slerp);
bgc_slerp_get_turn_for_phase_fp32(&slerp, 0.5f, &result);
printf("Result: %0.12f, %0.12f, %0.12f, %0.12f\n", result.s0, result.x1, result.x2, result.x3);
*/
test_basis_difference_fp64();
return 0;
}

View file

@ -49,6 +49,38 @@
<Unit filename="main.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex.h" />
<Unit filename="tests/complex/complex_copy.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_copy.h" />
<Unit filename="tests/complex/complex_is_unit.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_is_unit.h" />
<Unit filename="tests/complex/complex_is_zero.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_is_zero.h" />
<Unit filename="tests/complex/complex_modulus.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_modulus.h" />
<Unit filename="tests/complex/complex_reset.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_reset.h" />
<Unit filename="tests/complex/complex_set_values.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_set_values.h" />
<Unit filename="tests/complex/complex_swap.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tests/complex/complex_swap.h" />
<Unit filename="tests/quaternion.c">
<Option compilerVar="CC" />
</Unit>

View file

@ -150,6 +150,15 @@
<ItemGroup>
<ClCompile Include="helpers.c" />
<ClCompile Include="main.c" />
<ClCompile Include="tests\complex.c" />
<ClCompile Include="tests\complex\complex_copy.c" />
<ClCompile Include="tests\complex\complex_is_unit.c" />
<ClCompile Include="tests\complex\complex_is_zero.c" />
<ClCompile Include="tests\complex\complex_modulus.c" />
<ClCompile Include="tests\complex\complex_reset.c" />
<ClCompile Include="tests\complex\complex_set_values.c" />
<ClCompile Include="tests\complex\complex_swap.c" />
<ClCompile Include="tests\complex\complex_arithmetics.c" />
<ClCompile Include="tests\quaternion.c" />
<ClCompile Include="tests\quaternion\quaternion_copy.c" />
<ClCompile Include="tests\quaternion\quaternion_is_unit.c" />
@ -164,6 +173,7 @@
<ClCompile Include="tests\utilities\is_unit.c" />
<ClCompile Include="tests\utilities\is_zero.c" />
<ClCompile Include="tests\vector2.c" />
<ClCompile Include="tests\vector2\vector2_arithmetics.c" />
<ClCompile Include="tests\vector2\vector2_is_unit.c" />
<ClCompile Include="tests\vector2\vector2_is_zero.c" />
<ClCompile Include="tests\vector2\vector2_copy.c" />
@ -172,6 +182,7 @@
<ClCompile Include="tests\vector2\vector2_set_values.c" />
<ClCompile Include="tests\vector2\vector2_swap.c" />
<ClCompile Include="tests\vector3.c" />
<ClCompile Include="tests\vector3\vector3_arithmetics.c" />
<ClCompile Include="tests\vector3\vector3_is_unit.c" />
<ClCompile Include="tests\vector3\vector3_is_zero.c" />
<ClCompile Include="tests\vector3\vector3_copy.c" />
@ -190,6 +201,15 @@
</ItemGroup>
<ItemGroup>
<ClInclude Include="helpers.h" />
<ClInclude Include="tests\complex.h" />
<ClInclude Include="tests\complex\complex_copy.h" />
<ClInclude Include="tests\complex\complex_is_unit.h" />
<ClInclude Include="tests\complex\complex_is_zero.h" />
<ClInclude Include="tests\complex\complex_modulus.h" />
<ClInclude Include="tests\complex\complex_reset.h" />
<ClInclude Include="tests\complex\complex_set_values.h" />
<ClInclude Include="tests\complex\complex_swap.h" />
<ClInclude Include="tests\complex\complex_arithmetics.h" />
<ClInclude Include="tests\quaternion.h" />
<ClInclude Include="tests\quaternion\quaternion_copy.h" />
<ClInclude Include="tests\quaternion\quaternion_is_unit.h" />
@ -204,6 +224,7 @@
<ClInclude Include="tests\utilities\is_unit.h" />
<ClInclude Include="tests\utilities\is_zero.h" />
<ClInclude Include="tests\vector2.h" />
<ClInclude Include="tests\vector2\vector2_arithmetics.h" />
<ClInclude Include="tests\vector2\vector2_is_unit.h" />
<ClInclude Include="tests\vector2\vector2_is_zero.h" />
<ClInclude Include="tests\vector2\vector2_copy.h" />
@ -212,6 +233,7 @@
<ClInclude Include="tests\vector2\vector2_set_values.h" />
<ClInclude Include="tests\vector2\vector2_swap.h" />
<ClInclude Include="tests\vector3.h" />
<ClInclude Include="tests\vector3\vector3_arithmetics.h" />
<ClInclude Include="tests\vector3\vector3_is_unit.h" />
<ClInclude Include="tests\vector3\vector3_is_zero.h" />
<ClInclude Include="tests\vector3\vector3_copy.h" />

View file

@ -114,6 +114,39 @@
<ClCompile Include="tests\quaternion\quaternion_modulus.c">
<Filter>tests\quaternion</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_copy.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_is_unit.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_is_zero.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_modulus.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_reset.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_set_values.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_swap.c">
<Filter>tests\complex</Filter>
</ClCompile>
<ClCompile Include="tests\complex.c">
<Filter>tests</Filter>
</ClCompile>
<ClCompile Include="tests\vector2\vector2_arithmetics.c">
<Filter>tests\vector2</Filter>
</ClCompile>
<ClCompile Include="tests\vector3\vector3_arithmetics.c">
<Filter>tests\vector3</Filter>
</ClCompile>
<ClCompile Include="tests\complex\complex_arithmetics.c">
<Filter>tests\complex</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="helpers.h" />
@ -228,6 +261,39 @@
<ClInclude Include="tests\quaternion\quaternion_modulus.h">
<Filter>tests\quaternion</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_copy.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_is_unit.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_is_zero.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_modulus.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_reset.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_set_values.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_swap.h">
<Filter>tests\complex</Filter>
</ClInclude>
<ClInclude Include="tests\complex.h">
<Filter>tests</Filter>
</ClInclude>
<ClInclude Include="tests\vector2\vector2_arithmetics.h">
<Filter>tests\vector2</Filter>
</ClInclude>
<ClInclude Include="tests\vector3\vector3_arithmetics.h">
<Filter>tests\vector3</Filter>
</ClInclude>
<ClInclude Include="tests\complex\complex_arithmetics.h">
<Filter>tests\complex</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<Filter Include="tests">
@ -248,5 +314,8 @@
<Filter Include="tests\quaternion">
<UniqueIdentifier>{e8bafdb8-66e5-4393-bc89-8bff83bcccd6}</UniqueIdentifier>
</Filter>
<Filter Include="tests\complex">
<UniqueIdentifier>{e025e123-45aa-44f9-aab4-f1705844b211}</UniqueIdentifier>
</Filter>
</ItemGroup>
</Project>

View file

@ -6,6 +6,7 @@
#include "tests/utilities.h"
#include "tests/vector2.h"
#include "tests/vector3.h"
#include "tests/complex.h"
#include "tests/quaternion.h"
#include "tests/versor.h"
@ -17,6 +18,8 @@ int main()
test_vector3();
test_complex();
test_quaternion();
test_versor();

View file

@ -0,0 +1,19 @@
#include "./complex.h"
void test_complex()
{
print_testing_section("BGC Complex");
test_complex_reset();
test_complex_set_values();
test_complex_copy();
test_complex_swap();
test_complex_is_zero();
test_complex_is_unit();
test_complex_modulus();
test_complex_add();
test_complex_subtract();
test_complex_multiply();
test_complex_divide();
}

View file

@ -0,0 +1,16 @@
#ifndef _TEST_COMPLEX_H_
#define _TEST_COMPLEX_H_
#include "./../helpers.h"
#include "./complex/complex_reset.h"
#include "./complex/complex_set_values.h"
#include "./complex/complex_copy.h"
#include "./complex/complex_swap.h"
#include "./complex/complex_is_zero.h"
#include "./complex/complex_is_unit.h"
#include "./complex/complex_modulus.h"
#include "./complex/complex_arithmetics.h"
void test_complex();
#endif

View file

@ -0,0 +1,380 @@
#include "./complex_arithmetics.h"
#include "./../../helpers.h"
// ==================== Add ===================== //
void test_complex_add_fp32()
{
BgcComplexFP32 vector1, vector2, result;
print_testing_name("bgc_complex_add_fp32");
bgc_complex_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_complex_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_complex_add_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.real, 14.0f) || !bgc_are_close_fp32(result.imaginary, -15.0f)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp32(-0.28f, 100.1f, &vector1);
bgc_complex_set_values_fp32(1.78f, -0.1f, &vector2);
bgc_complex_add_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.real, 1.5f) || !bgc_are_close_fp32(result.imaginary, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_add_scaled_fp32()
{
BgcComplexFP32 vector1, vector2, result;
print_testing_name("bgc_complex_add_scaled_fp32");
bgc_complex_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_complex_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_complex_add_scaled_fp32(&vector1, & vector2, -2.0f, &result);
if (!bgc_are_close_fp32(result.real, 2.0f) || !bgc_are_close_fp32(result.imaginary, -30.0f)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp32(-0.27f, 100.3f, &vector1);
bgc_complex_set_values_fp32(1.59f, -0.1f, &vector2);
bgc_complex_add_scaled_fp32(&vector1, &vector2, 3.0f, &result);
if (!bgc_are_close_fp32(result.real, 4.5f) || !bgc_are_close_fp32(result.imaginary, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_add_fp64()
{
BgcComplexFP64 vector1, vector2, result;
print_testing_name("bgc_complex_add_fp64");
bgc_complex_set_values_fp64(10.0, -20.0, &vector1);
bgc_complex_set_values_fp64(4.0, 8.0, &vector2);
bgc_complex_add_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.real, 14.0) || !bgc_are_close_fp64(result.imaginary, -12.0)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp64(-0.27, 100.3, &vector1);
bgc_complex_set_values_fp64(1.29, -0.2, &vector2);
bgc_complex_add_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.real, 1.02) || !bgc_are_close_fp64(result.imaginary, 100.1)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_add_scaled_fp64()
{
BgcComplexFP64 vector1, vector2, result;
print_testing_name("bgc_complex_add_scaled_fp64");
bgc_complex_set_values_fp64(10.0, -20.0, &vector1);
bgc_complex_set_values_fp64(4.0, 5.0, &vector2);
bgc_complex_add_scaled_fp64(&vector1, &vector2, -2.0, &result);
if (!bgc_are_close_fp64(result.real, 2.0) || !bgc_are_close_fp64(result.imaginary, -30.0)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp64(-0.27, 100.3, &vector1);
bgc_complex_set_values_fp64(1.59, -0.1, &vector2);
bgc_complex_add_scaled_fp64(&vector1, &vector2, 3.0, &result);
if (!bgc_are_close_fp64(result.real, 4.5) || !bgc_are_close_fp64(result.imaginary, 100.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_add()
{
test_complex_add_fp32();
test_complex_add_fp64();
test_complex_add_scaled_fp32();
test_complex_add_scaled_fp64();
}
// ================== Subtract ================== //
void test_complex_subtract_fp32()
{
BgcComplexFP32 vector1, vector2, result;
print_testing_name("bgc_complex_subtract_fp32");
bgc_complex_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_complex_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_complex_subtract_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.real, 6.0f) || !bgc_are_close_fp32(result.imaginary, -25.0f)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp32(-0.28f, 99.9f, &vector1);
bgc_complex_set_values_fp32(-1.78f, -0.1f, &vector2);
bgc_complex_subtract_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.real, 1.5f) || !bgc_are_close_fp32(result.imaginary, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_subtract_scaled_fp32()
{
BgcComplexFP32 vector1, vector2, result;
print_testing_name("bgc_complex_subtract_scaled_fp32");
bgc_complex_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_complex_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_complex_subtract_scaled_fp32(&vector1, &vector2, 2.0f, &result);
if (!bgc_are_close_fp32(result.real, 2.0f) || !bgc_are_close_fp32(result.imaginary, -30.0f)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp32(0.36f, 100.4f, &vector1);
bgc_complex_set_values_fp32(1.09f, 0.1f, &vector2);
bgc_complex_subtract_scaled_fp32(&vector1, &vector2, 4.0f, &result);
if (!bgc_are_close_fp32(result.real, -4.0f) || !bgc_are_close_fp32(result.imaginary, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_subtract_fp64()
{
BgcComplexFP64 vector1, vector2, result;
print_testing_name("bgc_complex_subtract_fp64");
bgc_complex_set_values_fp64(10.0, -20.0, &vector1);
bgc_complex_set_values_fp64(4.0, 8.0, &vector2);
bgc_complex_subtract_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.real, 6.0) || !bgc_are_close_fp64(result.imaginary, -28.0)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp64(-0.27, 100.3, &vector1);
bgc_complex_set_values_fp64(1.29, -0.2, &vector2);
bgc_complex_subtract_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.real, -1.56) || !bgc_are_close_fp64(result.imaginary, 100.5)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_subtract_scaled_fp64()
{
BgcComplexFP64 vector1, vector2, result;
print_testing_name("bgc_complex_subtract_scaled_fp64");
bgc_complex_set_values_fp64(10.0, 20.0, &vector1);
bgc_complex_set_values_fp64(4.0, 5.0, &vector2);
bgc_complex_subtract_scaled_fp64(&vector1, &vector2, 2.5, &result);
if (!bgc_are_close_fp64(result.real, 0.0) || !bgc_are_close_fp64(result.imaginary, 7.5)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp64(-0.27, 100.3, &vector1);
bgc_complex_set_values_fp64(-1.29, -0.1, &vector2);
bgc_complex_subtract_scaled_fp64(&vector1, &vector2, 3.0, &result);
if (!bgc_are_close_fp64(result.real, 3.6) || !bgc_are_close_fp64(result.imaginary, 100.6)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_subtract()
{
test_complex_subtract_fp32();
test_complex_subtract_fp64();
test_complex_subtract_scaled_fp32();
test_complex_subtract_scaled_fp64();
}
// ================== Multiply ================== //
void test_complex_multiply_fp32()
{
BgcComplexFP32 vector, result;
print_testing_name("bgc_complex_multiply_fp32");
bgc_complex_set_values_fp32(10.0f, -20.0f, &vector);
bgc_complex_multiply_fp32(&vector, 0.5f, &result);
if (!bgc_are_close_fp32(result.real, 5.0f) || !bgc_are_close_fp32(result.imaginary, -10.0f)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp32(1.78f, -0.1f, &vector);
bgc_complex_multiply_fp32(&vector, 2.0f, &result);
if (!bgc_are_close_fp32(result.real, 3.56f) || !bgc_are_close_fp32(result.imaginary, -0.2f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_multiply_fp64()
{
BgcComplexFP64 vector, result;
print_testing_name("bgc_complex_multiply_fp64");
bgc_complex_set_values_fp64(30.0, -10.0, &vector);
bgc_complex_multiply_fp64(&vector, 0.3, &result);
if (!bgc_are_close_fp64(result.real, 9.0) || !bgc_are_close_fp64(result.imaginary, -3.0)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp64(1.18, -0.25, &vector);
bgc_complex_multiply_fp64(&vector, 4.0, &result);
if (!bgc_are_close_fp64(result.real, 4.72) || !bgc_are_close_fp64(result.imaginary, -1.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_multiply()
{
test_complex_multiply_fp32();
test_complex_multiply_fp64();
}
// =================== Divide =================== //
void test_complex_divide_fp32()
{
BgcComplexFP32 vector, result;
print_testing_name("bgc_complex_divide_fp32");
bgc_complex_set_values_fp32(10.0f, -20.0f, &vector);
bgc_complex_divide_fp32(&vector, 10.0f, &result);
if (!bgc_are_close_fp32(result.real, 1.0f) || !bgc_are_close_fp32(result.imaginary, -2.0f)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp32(1.78f, -0.1f, &vector);
bgc_complex_divide_fp32(&vector, 0.2f, &result);
if (!bgc_are_close_fp32(result.real, 8.9f) || !bgc_are_close_fp32(result.imaginary, -0.5f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_divide_fp64()
{
BgcComplexFP64 vector, result;
print_testing_name("bgc_complex_divide_fp64");
bgc_complex_set_values_fp64(30.0, -10.0, &vector);
bgc_complex_divide_fp64(&vector, 5.0, &result);
if (!bgc_are_close_fp64(result.real, 6.0) || !bgc_are_close_fp64(result.imaginary, -2.0)) {
print_testing_error("first test failed");
return;
}
bgc_complex_set_values_fp64(1.18, -0.25, &vector);
bgc_complex_divide_fp64(&vector, 0.5, &result);
if (!bgc_are_close_fp64(result.real, 2.36) || !bgc_are_close_fp64(result.imaginary, -0.5)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_complex_divide()
{
test_complex_divide_fp32();
test_complex_divide_fp64();
}

View file

@ -0,0 +1,45 @@
#ifndef _TEST_COMPLEX_ARITHMETICS_H_
#define _TEST_COMPLEX_ARITHMETICS_H_
// ==================== Add ===================== //
void test_complex_add_fp32();
void test_complex_add_scaled_fp32();
void test_complex_add_fp64();
void test_complex_add_scaled_fp64();
void test_complex_add();
// ================== Subtract ================== //
void test_complex_subtract_fp32();
void test_complex_subtract_scaled_fp32();
void test_complex_subtract_fp64();
void test_complex_subtract_scaled_fp64();
void test_complex_subtract();
// ================== Multiply ================== //
void test_complex_multiply_fp32();
void test_complex_multiply_fp64();
void test_complex_multiply();
// =================== Divide =================== //
void test_complex_divide_fp32();
void test_complex_divide_fp64();
void test_complex_divide();
#endif

View file

@ -0,0 +1,71 @@
#include "./complex_copy.h"
#include <math.h>
#include "./../../helpers.h"
// ==================== FP32 ==================== //
static const int _TEST_FP32_COMPLEX_AMOUNT = 4;
static const BgcComplexFP32 _TEST_FP32_COMPLEX_LIST[] = {
{ 1.0f, 2.0f },
{ -4.0f, -3.0f },
{ -0.001f, 100.0f },
{ 0.001f, -100.0f }
};
void test_complex_copy_fp32()
{
BgcComplexFP32 vector;
print_testing_name("bgc_complex_copy_fp32");
for (int i = 0; i < _TEST_FP32_COMPLEX_AMOUNT; i++) {
bgc_complex_copy_fp32(&_TEST_FP32_COMPLEX_LIST[i], &vector);
if (vector.real != _TEST_FP32_COMPLEX_LIST[i].real ||
vector.imaginary != _TEST_FP32_COMPLEX_LIST[i].imaginary) {
print_testing_failed();
return;
}
}
print_testing_success();
}
// ==================== FP64 ==================== //
static const int _TEST_FP64_COMPLEX_AMOUNT = 4;
static const BgcComplexFP64 _TEST_FP64_COMPLEX_LIST[] = {
{ 1.0, 2.0 },
{ -4.0, -3.0 },
{ -0.001, 100.0 },
{ 0.001, -100.0 }
};
void test_complex_copy_fp64()
{
BgcComplexFP64 vector;
print_testing_name("bgc_complex_copy_fp64");
for (int i = 0; i < _TEST_FP64_COMPLEX_AMOUNT; i++) {
bgc_complex_copy_fp64(&_TEST_FP64_COMPLEX_LIST[i], &vector);
if (vector.real != _TEST_FP64_COMPLEX_LIST[i].real ||
vector.imaginary != _TEST_FP64_COMPLEX_LIST[i].imaginary) {
print_testing_failed();
return;
}
}
print_testing_success();
}
void test_complex_copy()
{
test_complex_copy_fp32();
test_complex_copy_fp64();
}

View file

@ -0,0 +1,10 @@
#ifndef _TEST_COMPLEX_COPY_H_
#define _TEST_COMPLEX_COPY_H_
void test_complex_copy_fp32();
void test_complex_copy_fp64();
void test_complex_copy();
#endif

View file

@ -0,0 +1,109 @@
#include "./complex_is_unit.h"
#include "./../../helpers.h"
// ==================== FP32 ==================== //
static const int _TEST_FP32_UNIT_COMPLEX_AMOUNT = 10;
static const int _TEST_FP32_NONUNIT_COMPLEX_AMOUNT = 6;
static const BgcComplexFP32 _TEST_FP32_UNIT_COMPLEX_LIST[] = {
{ 1.0f, 0.0f },
{ -1.0f, 0.0f },
{ 0.6f, -0.8f },
{ 1.0f + 0.75f * BGC_EPSYLON_FP32, 0.0f },
{ 1.0f - 0.75f * BGC_EPSYLON_FP32, 0.0f },
{ 0.0f, 1.0f + 0.75f * BGC_EPSYLON_FP32 },
{ 0.0f, 1.0f - 0.75f * BGC_EPSYLON_FP32 },
{ 0.7071067812f, 0.7071067812f },
{ 0.7071067812f + 0.75f * BGC_EPSYLON_FP32, 0.7071067812f },
{ 0.7071067812f, 0.7071067812f - 0.75f * BGC_EPSYLON_FP32 }
};
static const BgcComplexFP32 _TEST_FP32_NONUNIT_QUATERION_LIST[] = {
{ 1.0f + 1.25f * BGC_EPSYLON_FP32, 0.0f },
{ 1.0f - 1.25f * BGC_EPSYLON_FP32, 0.0f },
{ 0.0f, 1.0f + 1.25f * BGC_EPSYLON_FP32 },
{ 0.0f, 1.0f - 1.25f * BGC_EPSYLON_FP32 },
{ 0.7071067812f + 1.25f * BGC_EPSYLON_FP32, 0.7071067812f + 1.25f * BGC_EPSYLON_FP32 },
{ 0.7071067812f - 1.25f * BGC_EPSYLON_FP32, 0.7071067812f - 1.25f * BGC_EPSYLON_FP32 }
};
void test_complex_is_unit_fp32()
{
print_testing_name("bgc_complex_is_unit_fp32");
// Testing zero values:
for (int i = 0; i < _TEST_FP32_UNIT_COMPLEX_AMOUNT; i++) {
if (!bgc_complex_is_unit_fp32(&_TEST_FP32_UNIT_COMPLEX_LIST[i])) {
print_testing_error("A unit complex number was not recognized");
return;
}
}
// Testing non-zero values:
for (int i = 0; i < _TEST_FP32_NONUNIT_COMPLEX_AMOUNT; i++) {
if (bgc_complex_is_unit_fp32(&_TEST_FP32_NONUNIT_QUATERION_LIST[i])) {
print_testing_error("A non-unit complex number was recognized a unit complex number");
return;
}
}
print_testing_success();
}
// ==================== FP64 ==================== //
static const int _TEST_FP64_UNIT_COMPLEX_AMOUNT = 10;
static const int _TEST_FP64_NONUNIT_COMPLEX_AMOUNT = 6;
static const BgcComplexFP64 _TEST_FP64_UNIT_COMPLEX_LIST[] = {
{ 1.0, 0.0 },
{ -1.0, 0.0 },
{ -0.6, 0.8 },
{ 1.0 + 0.75 * BGC_EPSYLON_FP64, 0.0 },
{ 1.0 - 0.75 * BGC_EPSYLON_FP64, 0.0 },
{ 0.0, 1.0 + 0.75 * BGC_EPSYLON_FP64 },
{ 0.0, 1.0 - 0.75 * BGC_EPSYLON_FP64 },
{ 0.7071067811865475244, 0.7071067811865475244 },
{ 0.7071067811865475244 + 0.75 * BGC_EPSYLON_FP64, 0.7071067811865475244 },
{ 0.7071067811865475244, 0.7071067811865475244 - 0.75 * BGC_EPSYLON_FP64 }
};
static const BgcComplexFP64 _TEST_FP64_NONUNIT_QUATERION_LIST[] = {
{ 1.0 + 1.25 * BGC_EPSYLON_FP64, 0.0 },
{ 1.0 - 1.25 * BGC_EPSYLON_FP64, 0.0 },
{ 0.0, 1.0 + 1.25 * BGC_EPSYLON_FP64 },
{ 0.0, 1.0 - 1.25 * BGC_EPSYLON_FP64 },
{ 0.7071067811865475244 + 1.25 * BGC_EPSYLON_FP64, 0.7071067811865475244 + 1.25 * BGC_EPSYLON_FP64 },
{ 0.7071067811865475244 - 1.25 * BGC_EPSYLON_FP64, 0.7071067811865475244 - 1.25 * BGC_EPSYLON_FP64 }
};
void test_complex_is_unit_fp64()
{
print_testing_name("bgc_complex_is_unit_fp64");
// Testing zero values:
for (int i = 0; i < _TEST_FP64_UNIT_COMPLEX_AMOUNT; i++) {
if (!bgc_complex_is_unit_fp64(&_TEST_FP64_UNIT_COMPLEX_LIST[i])) {
print_testing_error("A unit complex number was not recognized");
return;
}
}
// Testing non-zero values:
for (int i = 0; i < _TEST_FP64_NONUNIT_COMPLEX_AMOUNT; i++) {
if (bgc_complex_is_unit_fp64(&_TEST_FP64_NONUNIT_QUATERION_LIST[i])) {
print_testing_error("A non-unit complex number was recognized a unit complex number");
return;
}
}
print_testing_success();
}
void test_complex_is_unit()
{
test_complex_is_unit_fp32();
test_complex_is_unit_fp64();
}

View file

@ -0,0 +1,10 @@
#ifndef _TEST_COMPLEX_IS_UNIT_H_
#define _TEST_COMPLEX_IS_UNIT_H_
void test_complex_is_unit_fp32();
void test_complex_is_unit_fp64();
void test_complex_is_unit();
#endif

View file

@ -0,0 +1,101 @@
#include "./complex_is_zero.h"
#include "./../../helpers.h"
// ==================== FP32 ==================== //
static const int _TEST_FP32_ZERO_COMPLEX_AMOUNT = 4;
static const int _TEST_FP32_NONZERO_COMPLEX_AMOUNT = 7;
static const BgcComplexFP32 _TEST_FP32_ZERO_COMPLEX_LIST[] = {
{ 0.0f, 0.0f },
{ 0.75f * BGC_EPSYLON_FP32, 0.0f },
{ -0.75f * BGC_EPSYLON_FP32, 0.0f },
{ 0.0f, 0.75f * BGC_EPSYLON_FP32 },
{ 0.0f, -0.75f * BGC_EPSYLON_FP32 }
};
static const BgcComplexFP32 _TEST_FP32_NONZERO_QUATERION_LIST[] = {
{ 0.0f, 1.0f },
{ 1.25f * BGC_EPSYLON_FP32 },
{ -1.25f * BGC_EPSYLON_FP32 },
{ 0.0f, 1.25f * BGC_EPSYLON_FP32 },
{ 0.0f, -1.25f * BGC_EPSYLON_FP32 },
{ 1.25f * BGC_EPSYLON_FP32, 1.25f * BGC_EPSYLON_FP32 },
{ -1.25f * BGC_EPSYLON_FP32, -1.25f * BGC_EPSYLON_FP32 }
};
void test_complex_is_zero_fp32()
{
print_testing_name("bgc_complex_is_zero_fp32");
// Testing zero values:
for (int i = 0; i < _TEST_FP32_ZERO_COMPLEX_AMOUNT; i++) {
if (!bgc_complex_is_zero_fp32(&_TEST_FP32_ZERO_COMPLEX_LIST[i])) {
print_testing_error("A zero complex number was not recognized");
return;
}
}
// Testing non-zero values:
for (int i = 0; i < _TEST_FP32_NONZERO_COMPLEX_AMOUNT; i++) {
if (bgc_complex_is_zero_fp32(&_TEST_FP32_NONZERO_QUATERION_LIST[i])) {
print_testing_error("A non-zero complex number was recognized as a zero complex number");
return;
}
}
print_testing_success();
}
// ==================== FP64 ==================== //
static const int _TEST_FP64_ZERO_COMPLEX_AMOUNT = 4;
static const int _TEST_FP64_NONZERO_COMPLEX_AMOUNT = 7;
static const BgcComplexFP64 _TEST_FP64_ZERO_COMPLEX_LIST[] = {
{ 0.0, 0.0 },
{ 0.75 * BGC_EPSYLON_FP64, 0.0 },
{ -0.75 * BGC_EPSYLON_FP64, 0.0 },
{ 0.0, 0.75 * BGC_EPSYLON_FP64 },
{ 0.0, -0.75 * BGC_EPSYLON_FP64 }
};
static const BgcComplexFP64 _TEST_FP64_NONZERO_QUATERION_LIST[] = {
{ 0.0, 1.0 },
{ 1.25 * BGC_EPSYLON_FP64, 0.0 },
{ -1.25 * BGC_EPSYLON_FP64, 0.0 },
{ 0.0, 1.25 * BGC_EPSYLON_FP64 },
{ 0.0, -1.25 * BGC_EPSYLON_FP64 },
{ 1.25 * BGC_EPSYLON_FP64, 1.25 * BGC_EPSYLON_FP64 },
{ -1.25 * BGC_EPSYLON_FP64, -1.25 * BGC_EPSYLON_FP64 }
};
void test_complex_is_zero_fp64()
{
print_testing_name("bgc_complex_is_zero_fp64");
// Testing zero values:
for (int i = 0; i < _TEST_FP64_ZERO_COMPLEX_AMOUNT; i++) {
if (!bgc_complex_is_zero_fp64(&_TEST_FP64_ZERO_COMPLEX_LIST[i])) {
print_testing_error("A zero complex number was not recognized");
return;
}
}
// Testing non-zero values:
for (int i = 0; i < _TEST_FP64_NONZERO_COMPLEX_AMOUNT; i++) {
if (bgc_complex_is_zero_fp64(&_TEST_FP64_NONZERO_QUATERION_LIST[i])) {
print_testing_error("A non-zero complex number was recognized as a zero complex number");
return;
}
}
print_testing_success();
}
void test_complex_is_zero()
{
test_complex_is_zero_fp32();
test_complex_is_zero_fp64();
}

View file

@ -0,0 +1,10 @@
#ifndef _TEST_COMPLEX_IS_ZERO_H_
#define _TEST_COMPLEX_IS_ZERO_H_
void test_complex_is_zero_fp32();
void test_complex_is_zero_fp64();
void test_complex_is_zero();
#endif

View file

@ -0,0 +1,117 @@
#include "./complex_modulus.h"
#include "./../../helpers.h"
// ==================== FP32 ==================== //
static const int _TEST_FP32_COMPLEX_AMOUNT = 4;
static const BgcComplexFP32 _TEST_FP32_COMPLEX_LIST[] = {
{ 4.0f, 3.0f },
{ -1.0f, 1.0f },
{ 100.0f, -100.0f },
{ -0.86602540378f, 0.5f }
};
static const float _TEST_FP32_SQUARE_MODULUS_LIST[] = {
25.0f,
2.0f,
20000.0f,
1.0f
};
static const float _TEST_FP32_MODULUS_LIST[] = {
5.0f,
1.414213562373f,
141.4213562373f,
1.0f
};
void test_complex_square_modulus_fp32()
{
print_testing_name("bgc_complex_get_square_modulus_fp32");
for (int i = 0; i < _TEST_FP32_COMPLEX_AMOUNT; i++) {
if (!bgc_are_close_fp32(bgc_complex_get_square_modulus_fp32(&_TEST_FP32_COMPLEX_LIST[i]), _TEST_FP32_SQUARE_MODULUS_LIST[i])) {
print_testing_failed();
return;
}
}
print_testing_success();
}
void test_complex_modulus_fp32()
{
print_testing_name("bgc_complex_get_modulus_fp32");
for (int i = 0; i < _TEST_FP32_COMPLEX_AMOUNT; i++) {
if (!bgc_are_close_fp32(bgc_complex_get_modulus_fp32(&_TEST_FP32_COMPLEX_LIST[i]), _TEST_FP32_MODULUS_LIST[i])) {
print_testing_failed();
return;
}
}
print_testing_success();
}
// ==================== FP64 ==================== //
static const int _TEST_FP64_COMPLEX_AMOUNT = 4;
static const BgcComplexFP64 _TEST_FP64_COMPLEX_LIST[] = {
{ 4.0, 3.0 },
{ -1.0, -1.0 },
{ -100.0, 100.0 },
{ -0.5, 0.866025403784438647 }
};
static const double _TEST_FP64_SQUARE_MODULUS_LIST[] = {
25.0,
2.0,
20000.0,
1.0
};
static const double _TEST_FP64_MODULUS_LIST[] = {
5.0,
1.4142135623730950488,
141.42135623730950488,
1.0
};
void test_complex_square_modulus_fp64()
{
print_testing_name("bgc_complex_get_square_modulus_fp64");
for (int i = 0; i < _TEST_FP64_COMPLEX_AMOUNT; i++) {
if (!bgc_are_close_fp64(bgc_complex_get_square_modulus_fp64(&_TEST_FP64_COMPLEX_LIST[i]), _TEST_FP64_SQUARE_MODULUS_LIST[i])) {
print_testing_failed();
return;
}
}
print_testing_success();
}
void test_complex_modulus_fp64()
{
print_testing_name("bgc_complex_get_modulus_fp64");
for (int i = 0; i < _TEST_FP64_COMPLEX_AMOUNT; i++) {
if (!bgc_are_close_fp64(bgc_complex_get_modulus_fp64(&_TEST_FP64_COMPLEX_LIST[i]), _TEST_FP64_MODULUS_LIST[i])) {
print_testing_failed();
return;
}
}
print_testing_success();
}
void test_complex_modulus()
{
test_complex_square_modulus_fp32();
test_complex_square_modulus_fp64();
test_complex_modulus_fp32();
test_complex_modulus_fp64();
}

View file

@ -0,0 +1,14 @@
#ifndef _TEST_COMPLEX_MODULUS_H_
#define _TEST_COMPLEX_MODULUS_H_
void test_complex_square_modulus_fp32();
void test_complex_square_modulus_fp64();
void test_complex_modulus_fp32();
void test_complex_modulus_fp64();
void test_complex_modulus();
#endif

View file

@ -0,0 +1,41 @@
#include "./complex_reset.h"
#include "./../../helpers.h"
void test_complex_reset_fp32()
{
BgcComplexFP32 vector;
print_testing_name("bgc_complex_reset_fp32");
bgc_complex_reset_fp32(&vector);
if (vector.real != 0.0f || vector.imaginary != 0.0f) {
print_testing_failed();
return;
}
print_testing_success();
}
void test_complex_reset_fp64()
{
BgcComplexFP64 vector;
print_testing_name("bgc_complex_reset_fp64");
bgc_complex_reset_fp64(&vector);
if (vector.real != 0.0 || vector.imaginary != 0.0) {
print_testing_failed();
return;
}
print_testing_success();
}
void test_complex_reset()
{
test_complex_reset_fp32();
test_complex_reset_fp64();
}

View file

@ -0,0 +1,10 @@
#ifndef _TEST_COMPLEX_RESET_H_
#define _TEST_COMPLEX_RESET_H_
void test_complex_reset_fp32();
void test_complex_reset_fp64();
void test_complex_reset();
#endif

View file

@ -0,0 +1,75 @@
#include "./complex_set_values.h"
#include <math.h>
#include "./../../helpers.h"
// ==================== FP32 ==================== //
void test_complex_set_values_fp32()
{
BgcComplexFP32 vector;
print_testing_name("bgc_complex_set_values_fp32");
bgc_complex_set_values_fp32(1.0f, 2.0f, &vector);
if (vector.real != 1.0f || vector.imaginary != 2.0f) {
print_testing_error("First step failed");
return;
}
bgc_complex_set_values_fp32(-1.0f, -3.0f, &vector);
if (vector.real != -1.0f || vector.imaginary != -3.0f) {
print_testing_error("Second step failed");
return;
}
bgc_complex_set_values_fp32(-8.0f, -2.0f, &vector);
if (vector.real != -8.0f || vector.imaginary != -2.0f) {
print_testing_error("Third step failed");
return;
}
print_testing_success();
}
// ==================== FP64 ==================== //
void test_complex_set_values_fp64()
{
BgcComplexFP64 vector;
print_testing_name("bgc_complex_set_values_fp64");
bgc_complex_set_values_fp64(1.0, 2.0, &vector);
if (vector.real != 1.0 || vector.imaginary != 2.0) {
print_testing_error("First step failed");
return;
}
bgc_complex_set_values_fp64(-1.0, -3.0, &vector);
if (vector.real != -1.0 || vector.imaginary != -3.0) {
print_testing_error("Second step failed");
return;
}
bgc_complex_set_values_fp64(-8.0, -2.0, &vector);
if (vector.real != -8.0 || vector.imaginary != -2.0) {
print_testing_error("Third step failed");
return;
}
print_testing_success();
}
void test_complex_set_values()
{
test_complex_set_values_fp32();
test_complex_set_values_fp64();
}

View file

@ -0,0 +1,10 @@
#ifndef _TEST_COMPLEX_SET_VALUES_H_
#define _TEST_COMPLEX_SET_VALUES_H_
void test_complex_set_values_fp32();
void test_complex_set_values_fp64();
void test_complex_set_values();
#endif

View file

@ -0,0 +1,95 @@
#include "./complex_swap.h"
#include <math.h>
#include "./../../helpers.h"
// ==================== FP32 ==================== //
static const int _TEST_FP32_COMPLEX_AMOUNT = 4;
static const BgcComplexFP32 _TEST_FP32_COMPLEX_LIST1[] = {
{ 3.0f, 4.0f },
{ -2.0f, -1.0f },
{ -244.8f, 100.0f },
{ 1000.32f, -100.1f }
};
static const BgcComplexFP32 _TEST_FP32_COMPLEX_LIST2[] = {
{ 5.3f, 1003.28f },
{ -0.0032f, 891.3f },
{ 5.322f, 0.9275f },
{ 1000.0f, -0.00025f }
};
void test_complex_swap_fp32()
{
BgcComplexFP32 compleimaginary, complex2;
print_testing_name("bgc_complex_swap_fp32");
for (int i = 0; i < _TEST_FP32_COMPLEX_AMOUNT; i++) {
bgc_complex_copy_fp32(&_TEST_FP32_COMPLEX_LIST1[i], &compleimaginary);
bgc_complex_copy_fp32(&_TEST_FP32_COMPLEX_LIST2[i], &complex2);
bgc_complex_swap_fp32(&compleimaginary, &complex2);
if (compleimaginary.real != _TEST_FP32_COMPLEX_LIST2[i].real ||
compleimaginary.imaginary != _TEST_FP32_COMPLEX_LIST2[i].imaginary ||
complex2.real != _TEST_FP32_COMPLEX_LIST1[i].real ||
complex2.imaginary != _TEST_FP32_COMPLEX_LIST1[i].imaginary) {
print_testing_failed();
return;
}
}
print_testing_success();
}
// ==================== FP64 ==================== //
static const int _TEST_FP64_COMPLEX_AMOUNT = 4;
static const BgcComplexFP64 _TEST_FP64_COMPLEX_LIST1[] = {
{ 1.0, 4.0 },
{ -4.0, -3.0 },
{ -244.8, 344.7 },
{ 1000.32, -271.3 }
};
static const BgcComplexFP64 _TEST_FP64_COMPLEX_LIST2[] = {
{ -0.123, 1003.28 },
{ 204.07, -781.89 },
{ 5.322, 0.9275 },
{ -0.419, 0.844 }
};
void test_complex_swap_fp64()
{
BgcComplexFP64 compleimaginary, complex2;
print_testing_name("bgc_complex_swap_fp64");
for (int i = 0; i < _TEST_FP64_COMPLEX_AMOUNT; i++) {
bgc_complex_copy_fp64(&_TEST_FP64_COMPLEX_LIST1[i], &compleimaginary);
bgc_complex_copy_fp64(&_TEST_FP64_COMPLEX_LIST2[i], &complex2);
bgc_complex_swap_fp64(&compleimaginary, &complex2);
if (compleimaginary.real != _TEST_FP64_COMPLEX_LIST2[i].real ||
compleimaginary.imaginary != _TEST_FP64_COMPLEX_LIST2[i].imaginary ||
complex2.real != _TEST_FP64_COMPLEX_LIST1[i].real ||
complex2.imaginary != _TEST_FP64_COMPLEX_LIST1[i].imaginary) {
print_testing_failed();
return;
}
}
print_testing_success();
}
void test_complex_swap()
{
test_complex_swap_fp32();
test_complex_swap_fp64();
}

View file

@ -0,0 +1,10 @@
#ifndef _TEST_COMPLEX_SWAP_H_
#define _TEST_COMPLEX_SWAP_H_
void test_complex_swap_fp32();
void test_complex_swap_fp64();
void test_complex_swap();
#endif

View file

@ -11,6 +11,11 @@ void test_vector2()
test_vector2_is_zero();
test_vector2_is_unit();
test_vector2_modulus();
test_vector2_add();
test_vector2_subtract();
test_vector2_multiply();
test_vector2_divide();
}

View file

@ -9,6 +9,7 @@
#include "./vector2/vector2_is_zero.h"
#include "./vector2/vector2_is_unit.h"
#include "./vector2/vector2_modulus.h"
#include "./vector2/vector2_arithmetics.h"
void test_vector2();

View file

@ -0,0 +1,380 @@
#include "./vector2_arithmetics.h"
#include "./../../helpers.h"
// ==================== Add ===================== //
void test_vector2_add_fp32()
{
BgcVector2FP32 vector1, vector2, result;
print_testing_name("bgc_vector2_add_fp32");
bgc_vector2_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_vector2_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_vector2_add_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 14.0f) || !bgc_are_close_fp32(result.x2, -15.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp32(-0.28f, 100.1f, &vector1);
bgc_vector2_set_values_fp32(1.78f, -0.1f, &vector2);
bgc_vector2_add_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 1.5f) || !bgc_are_close_fp32(result.x2, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_add_scaled_fp32()
{
BgcVector2FP32 vector1, vector2, result;
print_testing_name("bgc_vector2_add_scaled_fp32");
bgc_vector2_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_vector2_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_vector2_add_scaled_fp32(&vector1, & vector2, -2.0f, &result);
if (!bgc_are_close_fp32(result.x1, 2.0f) || !bgc_are_close_fp32(result.x2, -30.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp32(-0.27f, 100.3f, &vector1);
bgc_vector2_set_values_fp32(1.59f, -0.1f, &vector2);
bgc_vector2_add_scaled_fp32(&vector1, &vector2, 3.0f, &result);
if (!bgc_are_close_fp32(result.x1, 4.5f) || !bgc_are_close_fp32(result.x2, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_add_fp64()
{
BgcVector2FP64 vector1, vector2, result;
print_testing_name("bgc_vector2_add_fp64");
bgc_vector2_set_values_fp64(10.0, -20.0, &vector1);
bgc_vector2_set_values_fp64(4.0, 8.0, &vector2);
bgc_vector2_add_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, 14.0) || !bgc_are_close_fp64(result.x2, -12.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp64(-0.27, 100.3, &vector1);
bgc_vector2_set_values_fp64(1.29, -0.2, &vector2);
bgc_vector2_add_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, 1.02) || !bgc_are_close_fp64(result.x2, 100.1)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_add_scaled_fp64()
{
BgcVector2FP64 vector1, vector2, result;
print_testing_name("bgc_vector2_add_scaled_fp64");
bgc_vector2_set_values_fp64(10.0, -20.0, &vector1);
bgc_vector2_set_values_fp64(4.0, 5.0, &vector2);
bgc_vector2_add_scaled_fp64(&vector1, &vector2, -2.0, &result);
if (!bgc_are_close_fp64(result.x1, 2.0) || !bgc_are_close_fp64(result.x2, -30.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp64(-0.27, 100.3, &vector1);
bgc_vector2_set_values_fp64(1.59, -0.1, &vector2);
bgc_vector2_add_scaled_fp64(&vector1, &vector2, 3.0, &result);
if (!bgc_are_close_fp64(result.x1, 4.5) || !bgc_are_close_fp64(result.x2, 100.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_add()
{
test_vector2_add_fp32();
test_vector2_add_fp64();
test_vector2_add_scaled_fp32();
test_vector2_add_scaled_fp64();
}
// ================== Subtract ================== //
void test_vector2_subtract_fp32()
{
BgcVector2FP32 vector1, vector2, result;
print_testing_name("bgc_vector2_subtract_fp32");
bgc_vector2_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_vector2_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_vector2_subtract_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 6.0f) || !bgc_are_close_fp32(result.x2, -25.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp32(-0.28f, 99.9f, &vector1);
bgc_vector2_set_values_fp32(-1.78f, -0.1f, &vector2);
bgc_vector2_subtract_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 1.5f) || !bgc_are_close_fp32(result.x2, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_subtract_scaled_fp32()
{
BgcVector2FP32 vector1, vector2, result;
print_testing_name("bgc_vector2_subtract_scaled_fp32");
bgc_vector2_set_values_fp32(10.0f, -20.0f, &vector1);
bgc_vector2_set_values_fp32(4.0f, 5.0f, &vector2);
bgc_vector2_subtract_scaled_fp32(&vector1, &vector2, 2.0f, &result);
if (!bgc_are_close_fp32(result.x1, 2.0f) || !bgc_are_close_fp32(result.x2, -30.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp32(0.36f, 100.4f, &vector1);
bgc_vector2_set_values_fp32(1.09f, 0.1f, &vector2);
bgc_vector2_subtract_scaled_fp32(&vector1, &vector2, 4.0f, &result);
if (!bgc_are_close_fp32(result.x1, -4.0f) || !bgc_are_close_fp32(result.x2, 100.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_subtract_fp64()
{
BgcVector2FP64 vector1, vector2, result;
print_testing_name("bgc_vector2_subtract_fp64");
bgc_vector2_set_values_fp64(10.0, -20.0, &vector1);
bgc_vector2_set_values_fp64(4.0, 8.0, &vector2);
bgc_vector2_subtract_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, 6.0) || !bgc_are_close_fp64(result.x2, -28.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp64(-0.27, 100.3, &vector1);
bgc_vector2_set_values_fp64(1.29, -0.2, &vector2);
bgc_vector2_subtract_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, -1.56) || !bgc_are_close_fp64(result.x2, 100.5)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_subtract_scaled_fp64()
{
BgcVector2FP64 vector1, vector2, result;
print_testing_name("bgc_vector2_subtract_scaled_fp64");
bgc_vector2_set_values_fp64(10.0, 20.0, &vector1);
bgc_vector2_set_values_fp64(4.0, 5.0, &vector2);
bgc_vector2_subtract_scaled_fp64(&vector1, &vector2, 2.5, &result);
if (!bgc_are_close_fp64(result.x1, 0.0) || !bgc_are_close_fp64(result.x2, 7.5)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp64(-0.27, 100.3, &vector1);
bgc_vector2_set_values_fp64(-1.29, -0.1, &vector2);
bgc_vector2_subtract_scaled_fp64(&vector1, &vector2, 3.0, &result);
if (!bgc_are_close_fp64(result.x1, 3.6) || !bgc_are_close_fp64(result.x2, 100.6)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_subtract()
{
test_vector2_subtract_fp32();
test_vector2_subtract_fp64();
test_vector2_subtract_scaled_fp32();
test_vector2_subtract_scaled_fp64();
}
// ================== Multiply ================== //
void test_vector2_multiply_fp32()
{
BgcVector2FP32 vector, result;
print_testing_name("bgc_vector2_multiply_fp32");
bgc_vector2_set_values_fp32(10.0f, -20.0f, &vector);
bgc_vector2_multiply_fp32(&vector, 0.5f, &result);
if (!bgc_are_close_fp32(result.x1, 5.0f) || !bgc_are_close_fp32(result.x2, -10.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp32(1.78f, -0.1f, &vector);
bgc_vector2_multiply_fp32(&vector, 2.0f, &result);
if (!bgc_are_close_fp32(result.x1, 3.56f) || !bgc_are_close_fp32(result.x2, -0.2f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_multiply_fp64()
{
BgcVector2FP64 vector, result;
print_testing_name("bgc_vector2_multiply_fp64");
bgc_vector2_set_values_fp64(30.0, -10.0, &vector);
bgc_vector2_multiply_fp64(&vector, 0.3, &result);
if (!bgc_are_close_fp64(result.x1, 9.0) || !bgc_are_close_fp64(result.x2, -3.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp64(1.18, -0.25, &vector);
bgc_vector2_multiply_fp64(&vector, 4.0, &result);
if (!bgc_are_close_fp64(result.x1, 4.72) || !bgc_are_close_fp64(result.x2, -1.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_multiply()
{
test_vector2_multiply_fp32();
test_vector2_multiply_fp64();
}
// =================== Divide =================== //
void test_vector2_divide_fp32()
{
BgcVector2FP32 vector, result;
print_testing_name("bgc_vector2_divide_fp32");
bgc_vector2_set_values_fp32(10.0f, -20.0f, &vector);
bgc_vector2_divide_fp32(&vector, 10.0f, &result);
if (!bgc_are_close_fp32(result.x1, 1.0f) || !bgc_are_close_fp32(result.x2, -2.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp32(1.78f, -0.1f, &vector);
bgc_vector2_divide_fp32(&vector, 0.2f, &result);
if (!bgc_are_close_fp32(result.x1, 8.9f) || !bgc_are_close_fp32(result.x2, -0.5f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_divide_fp64()
{
BgcVector2FP64 vector, result;
print_testing_name("bgc_vector2_divide_fp64");
bgc_vector2_set_values_fp64(30.0, -10.0, &vector);
bgc_vector2_divide_fp64(&vector, 5.0, &result);
if (!bgc_are_close_fp64(result.x1, 6.0) || !bgc_are_close_fp64(result.x2, -2.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector2_set_values_fp64(1.18, -0.25, &vector);
bgc_vector2_divide_fp64(&vector, 0.5, &result);
if (!bgc_are_close_fp64(result.x1, 2.36) || !bgc_are_close_fp64(result.x2, -0.5)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector2_divide()
{
test_vector2_divide_fp32();
test_vector2_divide_fp64();
}

View file

@ -0,0 +1,45 @@
#ifndef _TEST_VECTOR2_ARITHMETICS_H_
#define _TEST_VECTOR2_ARITHMETICS_H_
// ==================== Add ===================== //
void test_vector2_add_fp32();
void test_vector2_add_scaled_fp32();
void test_vector2_add_fp64();
void test_vector2_add_scaled_fp64();
void test_vector2_add();
// ================== Subtract ================== //
void test_vector2_subtract_fp32();
void test_vector2_subtract_scaled_fp32();
void test_vector2_subtract_fp64();
void test_vector2_subtract_scaled_fp64();
void test_vector2_subtract();
// ================== Multiply ================== //
void test_vector2_multiply_fp32();
void test_vector2_multiply_fp64();
void test_vector2_multiply();
// =================== Divide =================== //
void test_vector2_divide_fp32();
void test_vector2_divide_fp64();
void test_vector2_divide();
#endif

View file

@ -11,4 +11,9 @@ void test_vector3()
test_vector3_is_zero();
test_vector3_is_unit();
test_vector3_modulus();
test_vector3_add();
test_vector3_subtract();
test_vector3_multiply();
test_vector3_divide();
}

View file

@ -9,6 +9,7 @@
#include "./vector3/vector3_is_zero.h"
#include "./vector3/vector3_is_unit.h"
#include "./vector3/vector3_modulus.h"
#include "./vector3/vector3_arithmetics.h"
void test_vector3();

View file

@ -0,0 +1,380 @@
#include "./vector3_arithmetics.h"
#include "./../../helpers.h"
// ==================== Add ===================== //
void test_vector3_add_fp32()
{
BgcVector3FP32 vector1, vector2, result;
print_testing_name("bgc_vector3_add_fp32");
bgc_vector3_set_values_fp32(10.0f, -20.0f, 30.0f, &vector1);
bgc_vector3_set_values_fp32(4.0f, 5.0f, -6.0f, &vector2);
bgc_vector3_add_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 14.0f) || !bgc_are_close_fp32(result.x2, -15.0f) || !bgc_are_close_fp32(result.x3, 24.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp32(-0.28f, 100.1f, -1.6f, &vector1);
bgc_vector3_set_values_fp32(1.78f, -0.1f, 0.4f, &vector2);
bgc_vector3_add_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 1.5f) || !bgc_are_close_fp32(result.x2, 100.0f) || !bgc_are_close_fp32(result.x3, -1.2f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_add_scaled_fp32()
{
BgcVector3FP32 vector1, vector2, result;
print_testing_name("bgc_vector3_add_scaled_fp32");
bgc_vector3_set_values_fp32(10.0f, -20.0f, 24.0f, &vector1);
bgc_vector3_set_values_fp32(4.0f, 5.0f, 6.0f, &vector2);
bgc_vector3_add_scaled_fp32(&vector1, & vector2, -2.0f, &result);
if (!bgc_are_close_fp32(result.x1, 2.0f) || !bgc_are_close_fp32(result.x2, -30.0f) || !bgc_are_close_fp32(result.x3, 12.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp32(-0.27f, 100.3f, -1.2f, &vector1);
bgc_vector3_set_values_fp32(1.59f, -0.1f, 0.4f, &vector2);
bgc_vector3_add_scaled_fp32(&vector1, &vector2, 3.0f, &result);
if (!bgc_are_close_fp32(result.x1, 4.5f) || !bgc_are_close_fp32(result.x2, 100.0f) || !bgc_are_close_fp32(result.x3, 0.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_add_fp64()
{
BgcVector3FP64 vector1, vector2, result;
print_testing_name("bgc_vector3_add_fp64");
bgc_vector3_set_values_fp64(10.0, -20.0, 30.0, &vector1);
bgc_vector3_set_values_fp64(4.0, 8.0, -9.0, &vector2);
bgc_vector3_add_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, 14.0) || !bgc_are_close_fp64(result.x2, -12.0) || !bgc_are_close_fp64(result.x3, 21.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp64(-0.27, 100.3, -8.2, &vector1);
bgc_vector3_set_values_fp64(1.29, -0.2, 14.1, &vector2);
bgc_vector3_add_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, 1.02) || !bgc_are_close_fp64(result.x2, 100.1) || !bgc_are_close_fp64(result.x3, 5.9)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_add_scaled_fp64()
{
BgcVector3FP64 vector1, vector2, result;
print_testing_name("bgc_vector3_add_scaled_fp64");
bgc_vector3_set_values_fp64(10.0, -20.0, 7.5, &vector1);
bgc_vector3_set_values_fp64(4.0, 5.0, 1.25, &vector2);
bgc_vector3_add_scaled_fp64(&vector1, &vector2, -2.0, &result);
if (!bgc_are_close_fp64(result.x1, 2.0) || !bgc_are_close_fp64(result.x2, -30.0) || !bgc_are_close_fp64(result.x3, 5.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp64(-0.27, 100.3, -20.0, &vector1);
bgc_vector3_set_values_fp64(1.59, -0.1, 5.0, &vector2);
bgc_vector3_add_scaled_fp64(&vector1, &vector2, 3.0, &result);
if (!bgc_are_close_fp64(result.x1, 4.5) || !bgc_are_close_fp64(result.x2, 100.0) || !bgc_are_close_fp64(result.x3, -5.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_add()
{
test_vector3_add_fp32();
test_vector3_add_fp64();
test_vector3_add_scaled_fp32();
test_vector3_add_scaled_fp64();
}
// ================== Subtract ================== //
void test_vector3_subtract_fp32()
{
BgcVector3FP32 vector1, vector2, result;
print_testing_name("bgc_vector3_subtract_fp32");
bgc_vector3_set_values_fp32(10.0f, -20.0f, 16.0f, &vector1);
bgc_vector3_set_values_fp32(4.0f, 5.0f, -4.0f, &vector2);
bgc_vector3_subtract_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 6.0f) || !bgc_are_close_fp32(result.x2, -25.0f) || !bgc_are_close_fp32(result.x3, 20.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp32(-0.28f, 99.9f, -0.2f, &vector1);
bgc_vector3_set_values_fp32(-1.78f, -0.1f, 2.8f, &vector2);
bgc_vector3_subtract_fp32(&vector1, &vector2, &result);
if (!bgc_are_close_fp32(result.x1, 1.5f) || !bgc_are_close_fp32(result.x2, 100.0f) || !bgc_are_close_fp32(result.x3, -3.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_subtract_scaled_fp32()
{
BgcVector3FP32 vector1, vector2, result;
print_testing_name("bgc_vector3_subtract_scaled_fp32");
bgc_vector3_set_values_fp32(10.0f, -20.0f, 1.25f, &vector1);
bgc_vector3_set_values_fp32(4.0f, 5.0f, -0.4f, &vector2);
bgc_vector3_subtract_scaled_fp32(&vector1, &vector2, 2.0f, &result);
if (!bgc_are_close_fp32(result.x1, 2.0f) || !bgc_are_close_fp32(result.x2, -30.0f) || !bgc_are_close_fp32(result.x3, 2.05f)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp32(0.36f, 100.4f, 10, &vector1);
bgc_vector3_set_values_fp32(1.09f, 0.1f, 2.5f, &vector2);
bgc_vector3_subtract_scaled_fp32(&vector1, &vector2, 4.0f, &result);
if (!bgc_are_close_fp32(result.x1, -4.0f) || !bgc_are_close_fp32(result.x2, 100.0f) || !bgc_are_close_fp32(result.x3, 0.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_subtract_fp64()
{
BgcVector3FP64 vector1, vector2, result;
print_testing_name("bgc_vector3_subtract_fp64");
bgc_vector3_set_values_fp64(10.0, -20.0, 15.0, &vector1);
bgc_vector3_set_values_fp64(4.0, 8.0, -5.0, &vector2);
bgc_vector3_subtract_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, 6.0) || !bgc_are_close_fp64(result.x2, -28.0) || !bgc_are_close_fp64(result.x3, 20.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp64(-0.27, 100.3, 2.0, &vector1);
bgc_vector3_set_values_fp64(1.29, -0.2, 0.8, &vector2);
bgc_vector3_subtract_fp64(&vector1, &vector2, &result);
if (!bgc_are_close_fp64(result.x1, -1.56) || !bgc_are_close_fp64(result.x2, 100.5) || !bgc_are_close_fp64(result.x3, 1.2)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_subtract_scaled_fp64()
{
BgcVector3FP64 vector1, vector2, result;
print_testing_name("bgc_vector3_subtract_scaled_fp64");
bgc_vector3_set_values_fp64(10.0, 20.0, 0.1, &vector1);
bgc_vector3_set_values_fp64(4.0, 5.0, -4.0, &vector2);
bgc_vector3_subtract_scaled_fp64(&vector1, &vector2, 2.5, &result);
if (!bgc_are_close_fp64(result.x1, 0.0) || !bgc_are_close_fp64(result.x2, 7.5) || !bgc_are_close_fp64(result.x3, 10.1)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp64(-0.27, 100.3, -0.01, &vector1);
bgc_vector3_set_values_fp64(-1.29, -0.1, 0.33, &vector2);
bgc_vector3_subtract_scaled_fp64(&vector1, &vector2, 3.0, &result);
if (!bgc_are_close_fp64(result.x1, 3.6) || !bgc_are_close_fp64(result.x2, 100.6) || !bgc_are_close_fp64(result.x3, -1.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_subtract()
{
test_vector3_subtract_fp32();
test_vector3_subtract_fp64();
test_vector3_subtract_scaled_fp32();
test_vector3_subtract_scaled_fp64();
}
// ================== Multiply ================== //
void test_vector3_multiply_fp32()
{
BgcVector3FP32 vector, result;
print_testing_name("bgc_vector3_multiply_fp32");
bgc_vector3_set_values_fp32(10.0f, -20.0f, 3.0f, &vector);
bgc_vector3_multiply_fp32(&vector, 0.5f, &result);
if (!bgc_are_close_fp32(result.x1, 5.0f) || !bgc_are_close_fp32(result.x2, -10.0f) || !bgc_are_close_fp32(result.x3, 1.5f)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp32(1.78f, -0.1f, 3.6f, &vector);
bgc_vector3_multiply_fp32(&vector, 2.0f, &result);
if (!bgc_are_close_fp32(result.x1, 3.56f) || !bgc_are_close_fp32(result.x2, -0.2f) || !bgc_are_close_fp32(result.x3, 7.2f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_multiply_fp64()
{
BgcVector3FP64 vector, result;
print_testing_name("bgc_vector3_multiply_fp64");
bgc_vector3_set_values_fp64(30.0, -10.0, 4.0, &vector);
bgc_vector3_multiply_fp64(&vector, 0.3, &result);
if (!bgc_are_close_fp64(result.x1, 9.0) || !bgc_are_close_fp64(result.x2, -3.0) || !bgc_are_close_fp64(result.x3, 1.2)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp64(1.18, -0.25, 0.02, &vector);
bgc_vector3_multiply_fp64(&vector, 4.0, &result);
if (!bgc_are_close_fp64(result.x1, 4.72) || !bgc_are_close_fp64(result.x2, -1.0) || !bgc_are_close_fp64(result.x3, 0.08)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_multiply()
{
test_vector3_multiply_fp32();
test_vector3_multiply_fp64();
}
// =================== Divide =================== //
void test_vector3_divide_fp32()
{
BgcVector3FP32 vector, result;
print_testing_name("bgc_vector3_divide_fp32");
bgc_vector3_set_values_fp32(10.0f, -20.0f, 40.0f, &vector);
bgc_vector3_divide_fp32(&vector, 10.0f, &result);
if (!bgc_are_close_fp32(result.x1, 1.0f) || !bgc_are_close_fp32(result.x2, -2.0f) || !bgc_are_close_fp32(result.x3, 4.0f)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp32(1.78f, -0.1f, 0.4f, &vector);
bgc_vector3_divide_fp32(&vector, 0.2f, &result);
if (!bgc_are_close_fp32(result.x1, 8.9f) || !bgc_are_close_fp32(result.x2, -0.5f) || !bgc_are_close_fp32(result.x3, 2.0f)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_divide_fp64()
{
BgcVector3FP64 vector, result;
print_testing_name("bgc_vector3_divide_fp64");
bgc_vector3_set_values_fp64(30.0, -10.0, 20.0, &vector);
bgc_vector3_divide_fp64(&vector, 5.0, &result);
if (!bgc_are_close_fp64(result.x1, 6.0) || !bgc_are_close_fp64(result.x2, -2.0) || !bgc_are_close_fp64(result.x3, 4.0)) {
print_testing_error("first test failed");
return;
}
bgc_vector3_set_values_fp64(4.5, -0.25, 1.5, &vector);
bgc_vector3_divide_fp64(&vector, -0.5, &result);
if (!bgc_are_close_fp64(result.x1, -9.0) || !bgc_are_close_fp64(result.x2, 0.5) || !bgc_are_close_fp64(result.x3, -3.0)) {
print_testing_error("second test failed");
return;
}
print_testing_success();
}
void test_vector3_divide()
{
test_vector3_divide_fp32();
test_vector3_divide_fp64();
}

View file

@ -0,0 +1,45 @@
#ifndef _TEST_VECTOR3_ARITHMETICS_H_
#define _TEST_VECTOR3_ARITHMETICS_H_
// ==================== Add ===================== //
void test_vector3_add_fp32();
void test_vector3_add_scaled_fp32();
void test_vector3_add_fp64();
void test_vector3_add_scaled_fp64();
void test_vector3_add();
// ================== Subtract ================== //
void test_vector3_subtract_fp32();
void test_vector3_subtract_scaled_fp32();
void test_vector3_subtract_fp64();
void test_vector3_subtract_scaled_fp64();
void test_vector3_subtract();
// ================== Multiply ================== //
void test_vector3_multiply_fp32();
void test_vector3_multiply_fp64();
void test_vector3_multiply();
// =================== Divide =================== //
void test_vector3_divide_fp32();
void test_vector3_divide_fp64();
void test_vector3_divide();
#endif

View file

@ -24,7 +24,7 @@ static const BgcVersorFP32 _TEST_FP32_NON_IDENTIYTY_VERSOR_LIST[] = {
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f },
{ 0.5f, 0.5f, 0.5f, 0.5f },
{ 1.0f - 1.25f * BGC_EPSYLON_FP32, 0.0f, 0.0f, 0.0f }
{ 1.0f, -1.25f * BGC_EPSYLON_FP32, 0.0f, 0.0f }
};
void test_versor_is_identity_fp32()
@ -72,7 +72,7 @@ static const BgcVersorFP64 _TEST_FP64_NON_IDENTIYTY_VERSOR_LIST[] = {
{ 0.0, 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 0.0, 1.0 },
{ 0.5, 0.5, 0.5, 0.5 },
{ 1.0 - 1.25 * BGC_EPSYLON_FP64, 0.0, 0.0, 0.0 }
{ 1.0, 0.0, 1.25 * BGC_EPSYLON_FP64, 0.0 }
};
void test_versor_is_identity_fp64()

26
basic-geometry/Makefile Normal file
View file

@ -0,0 +1,26 @@
CC=gcc
GFLAGS=-c -Wall -O2
SOURCES=utilities.c angle.c vector2.c vector3.c complex.c cotes-number.c \
matrix2x2.c matrix2x3.c matrix3x2.c matrix3x3.c matrixes.c \
rotation3.c quaternion.c versor.c
OBJECTS=$(SOURCES:.c=.o)
OBJECT_DIRECTORY=obj/Release
BINARY_DIRECTORY=bin/Release
BACK_PATH=../..
LIBRARY=libbgc.a
all: directories $(SOURCES) $(LIBRARY)
$(LIBRARY): $(OBJECTS)
cd ./$(OBJECT_DIRECTORY); \
ar -rv -s $(BACK_PATH)/$(BINARY_DIRECTORY)/$@ $(OBJECTS); \
cd $(BACK_PATH)
directories:
mkdir -p $(OBJECT_DIRECTORY)
mkdir -p $(BINARY_DIRECTORY)
.c.o:
$(CC) $(GFLAGS) $< -o $(OBJECT_DIRECTORY)/$@
clean:
rm -rf ./obj ./bin

View file

@ -48,6 +48,14 @@
</Unit>
<Unit filename="angle.h" />
<Unit filename="basic-geometry.h" />
<Unit filename="complex.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="complex.h" />
<Unit filename="cotes-number.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="cotes-number.h" />
<Unit filename="matrix2x2.c">
<Option compilerVar="CC" />
</Unit>
@ -76,10 +84,6 @@
<Option compilerVar="CC" />
</Unit>
<Unit filename="rotation3.h" />
<Unit filename="tangent-pair.c">
<Option compilerVar="CC" />
</Unit>
<Unit filename="tangent-pair.h" />
<Unit filename="utilities.c">
<Option compilerVar="CC" />
</Unit>

View file

@ -1,24 +1,26 @@
#ifndef _BGC_H_
#define _BGC_H_
#include "utilities.h"
#include "./utilities.h"
#include "angle.h"
#include "./angle.h"
#include "vector2.h"
#include "vector3.h"
#include "./vector2.h"
#include "./vector3.h"
#include "matrixes.h"
#include "matrix2x2.h"
#include "matrix2x3.h"
#include "matrix3x2.h"
#include "matrix3x3.h"
#include "./matrixes.h"
#include "./matrix2x2.h"
#include "./matrix2x3.h"
#include "./matrix3x2.h"
#include "./matrix3x3.h"
#include "tangent-pair.h"
#include "./complex.h"
#include "./cotes-number.h"
#include "rotation3.h"
#include "./rotation3.h"
#include "quaternion.h"
#include "versor.h"
#include "./quaternion.h"
#include "./versor.h"
#include "./slerp.h"
#endif

View file

@ -21,6 +21,8 @@
<ItemGroup>
<ClInclude Include="angle.h" />
<ClInclude Include="basic-geometry.h" />
<ClInclude Include="complex.h" />
<ClInclude Include="cotes-number.h" />
<ClInclude Include="matrix2x2.h" />
<ClInclude Include="matrix2x3.h" />
<ClInclude Include="matrix3x2.h" />
@ -28,14 +30,16 @@
<ClInclude Include="matrixes.h" />
<ClInclude Include="quaternion.h" />
<ClInclude Include="rotation3.h" />
<ClInclude Include="tangent-pair.h" />
<ClInclude Include="utilities.h" />
<ClInclude Include="slerp.h" />
<ClInclude Include="versor.h" />
<ClInclude Include="vector2.h" />
<ClInclude Include="vector3.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="angle.c" />
<ClInclude Include="complex.c" />
<ClInclude Include="cotes-number.c" />
<ClCompile Include="utilities.c" />
<ClCompile Include="matrix2x2.c" />
<ClCompile Include="matrix2x3.c" />
@ -44,7 +48,7 @@
<ClCompile Include="matrixes.c" />
<ClCompile Include="quaternion.c" />
<ClCompile Include="rotation3.c" />
<ClCompile Include="tangent-pair.c" />
<ClCompile Include="slerp.c" />
<ClCompile Include="versor.c" />
<ClCompile Include="vector2.c" />
<ClCompile Include="vector3.c" />

View file

@ -18,6 +18,12 @@
<ClInclude Include="angle.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
<ClInclude Include="complex.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
<ClInclude Include="cotes-number.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
<ClInclude Include="utilities.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
@ -54,7 +60,13 @@
<ClInclude Include="matrixes.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
<ClInclude Include="tangent-pair.h">
<ClInclude Include="complex.c">
<Filter>Исходные файлы</Filter>
</ClInclude>
<ClInclude Include="cotes-number.c">
<Filter>Исходные файлы</Filter>
</ClInclude>
<ClInclude Include="slerp.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
</ItemGroup>
@ -95,7 +107,7 @@
<ClCompile Include="matrix3x2.c">
<Filter>Исходные файлы</Filter>
</ClCompile>
<ClCompile Include="tangent-pair.c">
<ClCompile Include="slerp.c">
<Filter>Исходные файлы</Filter>
</ClCompile>
</ItemGroup>

124
basic-geometry/complex.c Normal file
View file

@ -0,0 +1,124 @@
#include "./complex.h"
extern inline void bgc_complex_reset_fp32(BgcComplexFP32* complex);
extern inline void bgc_complex_reset_fp64(BgcComplexFP64* complex);
extern inline void bgc_complex_set_values_fp32(const float real, const float imaginary, BgcComplexFP32* destination);
extern inline void bgc_complex_set_values_fp64(const double real, const double imaginary, BgcComplexFP64* destination);
extern inline float bgc_complex_get_square_modulus_fp32(const BgcComplexFP32* number);
extern inline double bgc_complex_get_square_modulus_fp64(const BgcComplexFP64* number);
extern inline float bgc_complex_get_modulus_fp32(const BgcComplexFP32* number);
extern inline double bgc_complex_get_modulus_fp64(const BgcComplexFP64* number);
extern inline int bgc_complex_is_zero_fp32(const BgcComplexFP32* number);
extern inline int bgc_complex_is_zero_fp64(const BgcComplexFP64* number);
extern inline int bgc_complex_is_unit_fp32(const BgcComplexFP32* number);
extern inline int bgc_complex_is_unit_fp64(const BgcComplexFP64* number);
extern inline void bgc_complex_copy_fp32(const BgcComplexFP32* source, BgcComplexFP32* destination);
extern inline void bgc_complex_copy_fp64(const BgcComplexFP64* source, BgcComplexFP64* destination);
extern inline void bgc_complex_swap_fp32(BgcComplexFP32* number1, BgcComplexFP32* number2);
extern inline void bgc_complex_swap_fp64(BgcComplexFP64* number1, BgcComplexFP64* number2);
extern inline void bgc_complex_convert_fp64_to_fp32(const BgcComplexFP64* source, BgcComplexFP32* destination);
extern inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcComplexFP64* destination);
extern inline void bgc_complex_reverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* reverse);
extern inline void bgc_complex_reverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* reverse);
extern inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized);
extern inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized);
extern inline void bgc_complex_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate);
extern inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate);
extern inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverted);
extern inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverted);
extern inline void bgc_complex_get_product_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result);
extern inline void bgc_complex_get_product_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result);
extern inline int bgc_complex_get_ratio_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient);
extern inline int bgc_complex_get_ratio_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient);
extern inline void bgc_complex_add_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* sum);
extern inline void bgc_complex_add_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* sum);
extern inline void bgc_complex_add_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* sum);
extern inline void bgc_complex_add_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* sum);
extern inline void bgc_complex_subtract_fp32(const BgcComplexFP32* minuend, const BgcComplexFP32* subtrahend, BgcComplexFP32* difference);
extern inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcComplexFP64* subtrahend, BgcComplexFP64* difference);
extern inline void bgc_complex_subtract_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* difference);
extern inline void bgc_complex_subtract_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* difference);
extern inline void bgc_complex_multiply_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product);
extern inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product);
extern inline void bgc_complex_divide_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient);
extern inline void bgc_complex_divide_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient);
extern inline void bgc_complex_get_mean_of_two_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* mean);
extern inline void bgc_complex_get_mean_of_two_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* mean);
extern inline void bgc_complex_get_mean_of_three_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const BgcComplexFP32* number3, BgcComplexFP32* mean);
extern inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const BgcComplexFP64* number3, BgcComplexFP64* mean);
extern inline void bgc_complex_interpolate_linearly_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation);
extern inline void bgc_complex_interpolate_linearly_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation);
extern inline void bgc_complex_minimize_fp32(const BgcComplexFP32* number, BgcComplexFP32* minimal);
extern inline void bgc_complex_minimize_fp64(const BgcComplexFP64* number, BgcComplexFP64* minimal);
extern inline void bgc_complex_maximize_fp32(const BgcComplexFP32* number, BgcComplexFP32* maximal);
extern inline void bgc_complex_maximize_fp64(const BgcComplexFP64* number, BgcComplexFP64* maximal);
extern inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2);
extern inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2);
// =============== Get Exponation =============== //
void bgc_complex_get_exponation_fp32(const BgcComplexFP32* base, const float real_exponent, const float imaginary_exponent, BgcComplexFP32* power)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(base);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
power->real = 0.0f;
power->imaginary = 0.0f;
return;
}
const float log_modulus = logf(square_modulus) * 0.5f;
const float angle = atan2f(base->imaginary, base->real);
const float power_modulus = expf(real_exponent * log_modulus - imaginary_exponent * angle);
const float power_angle = real_exponent * angle + imaginary_exponent * log_modulus;
power->real = power_modulus * cosf(power_angle);
power->imaginary = power_modulus * sinf(power_angle);
}
void bgc_complex_get_exponation_fp64(const BgcComplexFP64* base, const double real_exponent, const double imaginary_exponent, BgcComplexFP64* power)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(base);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
power->real = 0.0;
power->imaginary = 0.0;
return;
}
const double log_modulus = log(square_modulus) * 0.5;
const double angle = atan2(base->imaginary, base->real);
const double power_modulus = exp(real_exponent * log_modulus - imaginary_exponent * angle);
const double power_angle = real_exponent * angle + imaginary_exponent * log_modulus;
power->real = power_modulus * cos(power_angle);
power->imaginary = power_modulus * sin(power_angle);
}

531
basic-geometry/complex.h Normal file
View file

@ -0,0 +1,531 @@
#ifndef _BGC_COMPLEX_H_
#define _BGC_COMPLEX_H_
#include "utilities.h"
#include "angle.h"
#include <math.h>
typedef struct
{
float real, imaginary;
} BgcComplexFP32;
typedef struct
{
double real, imaginary;
} BgcComplexFP64;
// =================== Reset ==================== //
inline void bgc_complex_reset_fp32(BgcComplexFP32* complex)
{
complex->real = 0.0f;
complex->imaginary = 0.0f;
}
inline void bgc_complex_reset_fp64(BgcComplexFP64* complex)
{
complex->real = 0.0;
complex->imaginary = 0.0;
}
// ==================== Set ===================== //
inline void bgc_complex_set_values_fp32(const float real, const float imaginary, BgcComplexFP32* destination)
{
destination->real = real;
destination->imaginary = imaginary;
}
inline void bgc_complex_set_values_fp64(const double real, const double imaginary, BgcComplexFP64* destination)
{
destination->real = real;
destination->imaginary = imaginary;
}
// ================== Modulus =================== //
inline float bgc_complex_get_square_modulus_fp32(const BgcComplexFP32* number)
{
return number->real * number->real + number->imaginary * number->imaginary;
}
inline double bgc_complex_get_square_modulus_fp64(const BgcComplexFP64* number)
{
return number->real * number->real + number->imaginary * number->imaginary;
}
inline float bgc_complex_get_modulus_fp32(const BgcComplexFP32* number)
{
return sqrtf(bgc_complex_get_square_modulus_fp32(number));
}
inline double bgc_complex_get_modulus_fp64(const BgcComplexFP64* number)
{
return sqrt(bgc_complex_get_square_modulus_fp64(number));
}
// ================= Comparison ================= //
inline int bgc_complex_is_zero_fp32(const BgcComplexFP32* number)
{
return bgc_complex_get_square_modulus_fp32(number) <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_complex_is_zero_fp64(const BgcComplexFP64* number)
{
return bgc_complex_get_square_modulus_fp64(number) <= BGC_SQUARE_EPSYLON_FP64;
}
inline int bgc_complex_is_unit_fp32(const BgcComplexFP32* number)
{
return bgc_is_sqare_unit_fp32(bgc_complex_get_square_modulus_fp32(number));
}
inline int bgc_complex_is_unit_fp64(const BgcComplexFP64* number)
{
return bgc_is_sqare_unit_fp64(bgc_complex_get_square_modulus_fp64(number));
}
// ==================== Copy ==================== //
inline void bgc_complex_copy_fp32(const BgcComplexFP32* source, BgcComplexFP32* destination)
{
destination->real = source->real;
destination->imaginary = source->imaginary;
}
inline void bgc_complex_copy_fp64(const BgcComplexFP64* source, BgcComplexFP64* destination)
{
destination->real = source->real;
destination->imaginary = source->imaginary;
}
// ==================== Swap ==================== //
inline void bgc_complex_swap_fp32(BgcComplexFP32* number1, BgcComplexFP32* number2)
{
const float real = number2->real;
const float imaginary = number2->imaginary;
number2->real = number1->real;
number2->imaginary = number1->imaginary;
number1->real = real;
number1->imaginary = imaginary;
}
inline void bgc_complex_swap_fp64(BgcComplexFP64* number1, BgcComplexFP64* number2)
{
const double real = number2->real;
const double imaginary = number2->imaginary;
number2->real = number1->real;
number2->imaginary = number1->imaginary;
number1->real = real;
number1->imaginary = imaginary;
}
// ================== Convert =================== //
inline void bgc_complex_convert_fp64_to_fp32(const BgcComplexFP64* source, BgcComplexFP32* destination)
{
destination->real = (float)source->real;
destination->imaginary = (float)source->imaginary;
}
inline void bgc_complex_convert_fp32_to_fp64(const BgcComplexFP32* source, BgcComplexFP64* destination)
{
destination->real = source->real;
destination->imaginary = source->imaginary;
}
// ================== Reverse =================== //
inline void bgc_complex_reverse_fp32(const BgcComplexFP32* number, BgcComplexFP32* reverse)
{
reverse->real = -number->real;
reverse->imaginary = -number->imaginary;
}
inline void bgc_complex_reverse_fp64(const BgcComplexFP64* number, BgcComplexFP64* reverse)
{
reverse->real = -number->real;
reverse->imaginary = -number->imaginary;
}
// ================= Normalize ================== //
inline int bgc_complex_normalize_fp32(const BgcComplexFP32* number, BgcComplexFP32* normalized)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
normalized->real = number->real;
normalized->imaginary = number->imaginary;
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = sqrtf(1.0f / square_modulus);
normalized->real = number->real * multiplicand;
normalized->imaginary = number->imaginary * multiplicand;
return 1;
}
inline int bgc_complex_normalize_fp64(const BgcComplexFP64* number, BgcComplexFP64* normalized)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
normalized->real = number->real;
normalized->imaginary = number->imaginary;
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = sqrt(1.0 / square_modulus);
normalized->real = number->real * multiplicand;
normalized->imaginary = number->imaginary * multiplicand;
return 1;
}
// ================= Conjugate ================== //
inline void bgc_complex_conjugate_fp32(const BgcComplexFP32* number, BgcComplexFP32* conjugate)
{
conjugate->real = number->real;
conjugate->imaginary = -number->imaginary;
}
inline void bgc_complex_conjugate_fp64(const BgcComplexFP64* number, BgcComplexFP64* conjugate)
{
conjugate->real = number->real;
conjugate->imaginary = -number->imaginary;
}
// =================== Invert =================== //
inline int bgc_complex_invert_fp32(const BgcComplexFP32* number, BgcComplexFP32* inverted)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(number);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = 1.0f / square_modulus;
inverted->real = number->real * multiplicand;
inverted->imaginary = -number->imaginary * multiplicand;
return 1;
}
inline int bgc_complex_invert_fp64(const BgcComplexFP64* number, BgcComplexFP64* inverted)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(number);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = 1.0 / square_modulus;
inverted->real = number->real * multiplicand;
inverted->imaginary = -number->imaginary * multiplicand;
return 1;
}
// ================ Get Product ================= //
inline void bgc_complex_get_product_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* result)
{
const float real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const float imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
result->real = real;
result->imaginary = imaginary;
}
inline void bgc_complex_get_product_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* result)
{
const double real = number1->real * number2->real - number1->imaginary * number2->imaginary;
const double imaginary = number1->real * number2->imaginary + number1->imaginary * number2->real;
result->real = real;
result->imaginary = imaginary;
}
// ================= Get Ratio ================== //
inline int bgc_complex_get_ratio_fp32(const BgcComplexFP32* divident, const BgcComplexFP32* divisor, BgcComplexFP32* quotient)
{
const float square_modulus = bgc_complex_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return 0;
}
const float real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const float imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const float multiplier = 1.0f / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
inline int bgc_complex_get_ratio_fp64(const BgcComplexFP64* divident, const BgcComplexFP64* divisor, BgcComplexFP64* quotient)
{
const double square_modulus = bgc_complex_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return 0;
}
const double real = divident->real * divisor->real + divident->imaginary * divisor->imaginary;
const double imaginary = divident->imaginary * divisor->real - divident->real * divisor->imaginary;
const double multiplier = 1.0 / square_modulus;
quotient->real = real * multiplier;
quotient->imaginary = imaginary * multiplier;
return 1;
}
// =============== Get Exponation =============== //
void bgc_complex_get_exponation_fp32(const BgcComplexFP32* base, const float real_exponent, const float imaginary_exponent, BgcComplexFP32* power);
void bgc_complex_get_exponation_fp64(const BgcComplexFP64* base, const double real_exponent, const double imaginary_exponent, BgcComplexFP64* power);
// ==================== Add ===================== //
inline void bgc_complex_add_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* sum)
{
sum->real = number1->real + number2->real;
sum->imaginary = number1->imaginary + number2->imaginary;
}
inline void bgc_complex_add_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* sum)
{
sum->real = number1->real + number2->real;
sum->imaginary = number1->imaginary + number2->imaginary;
}
// ================= Add scaled ================= //
inline void bgc_complex_add_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* sum)
{
sum->real = basic_number->real + scalable_number->real * scale;
sum->imaginary = basic_number->imaginary + scalable_number->imaginary * scale;
}
inline void bgc_complex_add_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* sum)
{
sum->real = basic_number->real + scalable_number->real * scale;
sum->imaginary = basic_number->imaginary + scalable_number->imaginary * scale;
}
// ================== Subtract ================== //
inline void bgc_complex_subtract_fp32(const BgcComplexFP32* minuend, const BgcComplexFP32* subtrahend, BgcComplexFP32* difference)
{
difference->real = minuend->real - subtrahend->real;
difference->imaginary = minuend->imaginary - subtrahend->imaginary;
}
inline void bgc_complex_subtract_fp64(const BgcComplexFP64* minuend, const BgcComplexFP64* subtrahend, BgcComplexFP64* difference)
{
difference->real = minuend->real - subtrahend->real;
difference->imaginary = minuend->imaginary - subtrahend->imaginary;
}
// ============== Subtract scaled =============== //
inline void bgc_complex_subtract_scaled_fp32(const BgcComplexFP32* basic_number, const BgcComplexFP32* scalable_number, const float scale, BgcComplexFP32* difference)
{
difference->real = basic_number->real - scalable_number->real * scale;
difference->imaginary = basic_number->imaginary - scalable_number->imaginary * scale;
}
inline void bgc_complex_subtract_scaled_fp64(const BgcComplexFP64* basic_number, const BgcComplexFP64* scalable_number, const double scale, BgcComplexFP64* difference)
{
difference->real = basic_number->real - scalable_number->real * scale;
difference->imaginary = basic_number->imaginary - scalable_number->imaginary * scale;
}
// ================== Multiply ================== //
inline void bgc_complex_multiply_fp32(const BgcComplexFP32* multiplicand, const float multiplier, BgcComplexFP32* product)
{
product->real = multiplicand->real * multiplier;
product->imaginary = multiplicand->imaginary * multiplier;
}
inline void bgc_complex_multiply_fp64(const BgcComplexFP64* multiplicand, const double multiplier, BgcComplexFP64* product)
{
product->real = multiplicand->real * multiplier;
product->imaginary = multiplicand->imaginary * multiplier;
}
// =================== Divide =================== //
inline void bgc_complex_divide_fp32(const BgcComplexFP32* dividend, const float divisor, BgcComplexFP32* quotient)
{
bgc_complex_multiply_fp32(dividend, 1.0f / divisor, quotient);
}
inline void bgc_complex_divide_fp64(const BgcComplexFP64* dividend, const double divisor, BgcComplexFP64* quotient)
{
bgc_complex_multiply_fp64(dividend, 1.0 / divisor, quotient);
}
// ================== Average2 ================== //
inline void bgc_complex_get_mean_of_two_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, BgcComplexFP32* mean)
{
mean->real = (number1->real + number2->real) * 0.5f;
mean->imaginary = (number1->imaginary + number2->imaginary) * 0.5f;
}
inline void bgc_complex_get_mean_of_two_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, BgcComplexFP64* mean)
{
mean->real = (number1->real + number2->real) * 0.5;
mean->imaginary = (number1->imaginary + number2->imaginary) * 0.5;
}
// ================== Average3 ================== //
inline void bgc_complex_get_mean_of_three_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const BgcComplexFP32* number3, BgcComplexFP32* mean)
{
mean->real = (number1->real + number2->real + number3->real) * BGC_ONE_THIRD_FP32;
mean->imaginary = (number1->imaginary + number2->imaginary + number3->imaginary) * BGC_ONE_THIRD_FP32;
}
inline void bgc_complex_get_mean_of_three_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const BgcComplexFP64* number3, BgcComplexFP64* mean)
{
mean->real = (number1->real + number2->real + number3->real) * BGC_ONE_THIRD_FP64;
mean->imaginary = (number1->imaginary + number2->imaginary + number3->imaginary) * BGC_ONE_THIRD_FP64;
}
// =================== Linear =================== //
inline void bgc_complex_interpolate_linearly_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2, const float phase, BgcComplexFP32* interpolation)
{
const float counterphase = 1.0f - phase;
interpolation->real = number1->real * counterphase + number2->real * phase;
interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase;
}
inline void bgc_complex_interpolate_linearly_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2, const double phase, BgcComplexFP64* interpolation)
{
const double counterphase = 1.0 - phase;
interpolation->real = number1->real * counterphase + number2->real * phase;
interpolation->imaginary = number1->imaginary * counterphase + number2->imaginary * phase;
}
// ================== Minimal =================== //
inline void bgc_complex_minimize_fp32(const BgcComplexFP32* number, BgcComplexFP32* minimal)
{
if (number->real < minimal->real) {
minimal->real = number->real;
}
if (number->imaginary < minimal->imaginary) {
minimal->imaginary = number->imaginary;
}
}
inline void bgc_complex_minimize_fp64(const BgcComplexFP64* number, BgcComplexFP64* minimal)
{
if (number->real < minimal->real) {
minimal->real = number->real;
}
if (number->imaginary < minimal->imaginary) {
minimal->imaginary = number->imaginary;
}
}
// ================== Maximal =================== //
inline void bgc_complex_maximize_fp32(const BgcComplexFP32* number, BgcComplexFP32* maximal)
{
if (number->real > maximal->real) {
maximal->real = number->real;
}
if (number->imaginary > maximal->imaginary) {
maximal->imaginary = number->imaginary;
}
}
inline void bgc_complex_maximize_fp64(const BgcComplexFP64* number, BgcComplexFP64* maximal)
{
if (number->real > maximal->real) {
maximal->real = number->real;
}
if (number->imaginary > maximal->imaginary) {
maximal->imaginary = number->imaginary;
}
}
// ================== Are Close ================= //
inline int bgc_complex_are_close_fp32(const BgcComplexFP32* number1, const BgcComplexFP32* number2)
{
const float square_modulus1 = bgc_complex_get_square_modulus_fp32(number1);
const float square_modulus2 = bgc_complex_get_square_modulus_fp32(number2);
const float d_real = number1->real - number2->real;
const float d_imaginary = number1->imaginary - number2->imaginary;
const float square_distance = d_real * d_real + d_imaginary * d_imaginary;
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32) {
return square_distance <= BGC_SQUARE_EPSYLON_FP32;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
}
inline int bgc_complex_are_close_fp64(const BgcComplexFP64* number1, const BgcComplexFP64* number2)
{
const double square_modulus1 = bgc_complex_get_square_modulus_fp64(number1);
const double square_modulus2 = bgc_complex_get_square_modulus_fp64(number2);
const double d_real = number1->real - number2->real;
const double d_imaginary = number1->imaginary - number2->imaginary;
const double square_distance = d_real * d_real + d_imaginary * d_imaginary;
if (square_modulus1 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 || square_modulus2 <= BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64) {
return square_distance <= BGC_SQUARE_EPSYLON_FP64;
}
return square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus1 && square_distance <= BGC_SQUARE_EPSYLON_FP32 * square_modulus2;
}
#endif

View file

@ -0,0 +1,85 @@
#include "./cotes-number.h"
const BgcCotesNumberFP32 BGC_IDLE_COTES_NUMBER_FP32 = { 1.0f, 0.0f };
const BgcCotesNumberFP64 BGC_IDLE_COTES_NUMBER_FP64 = { 1.0, 0.0 };
extern inline void bgc_cotes_number_reset_fp32(BgcCotesNumberFP32* number);
extern inline void bgc_cotes_number_reset_fp64(BgcCotesNumberFP64* number);
extern inline void bgc_cotes_number_set_values_fp32(const float x1, const float x2, BgcCotesNumberFP32* number);
extern inline void bgc_cotes_number_set_values_fp64(const double x1, const double x2, BgcCotesNumberFP64* number);
extern inline void bgc_cotes_number_set_turn_fp32(const float angle, const BgcAngleUnitEnum unit, BgcCotesNumberFP32* number);
extern inline void bgc_cotes_number_set_turn_fp64(const double angle, const BgcAngleUnitEnum unit, BgcCotesNumberFP64* number);
extern inline float bgc_cotes_number_get_angle_fp32(const BgcCotesNumberFP32* number, const BgcAngleUnitEnum unit);
extern inline double bgc_cotes_number_get_angle_fp64(const BgcCotesNumberFP64* number, const BgcAngleUnitEnum unit);
extern inline void bgc_cotes_number_copy_fp32(const BgcCotesNumberFP32* source, BgcCotesNumberFP32* destination);
extern inline void bgc_cotes_number_copy_fp64(const BgcCotesNumberFP64* source, BgcCotesNumberFP64* destination);
extern inline void bgc_cotes_number_swap_fp32(BgcCotesNumberFP32* number1, BgcCotesNumberFP32* number2);
extern inline void bgc_cotes_number_swap_fp64(BgcCotesNumberFP64* number1, BgcCotesNumberFP64* number2);
extern inline void bgc_cotes_number_convert_fp64_to_fp32(const BgcCotesNumberFP64* source, BgcCotesNumberFP32* destination);
extern inline void bgc_cotes_number_convert_fp32_to_fp64(const BgcCotesNumberFP32* source, BgcCotesNumberFP64* destination);
extern inline void bgc_cotes_number_invert_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* inverted);
extern inline void bgc_cotes_number_invert_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* inverted);
extern inline void bgc_cotes_number_get_exponation_fp32(const BgcCotesNumberFP32* base, const float exponent, BgcCotesNumberFP32* power);
extern inline void bgc_cotes_number_get_exponation_fp64(const BgcCotesNumberFP64* base, const double exponent, BgcCotesNumberFP64* power);
extern inline void bgc_cotes_number_combine_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2, BgcCotesNumberFP32* result);
extern inline void bgc_cotes_number_combine_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2, BgcCotesNumberFP64* result);
extern inline void bgc_cotes_number_exclude_fp32(const BgcCotesNumberFP32* base, const BgcCotesNumberFP32* excludant, BgcCotesNumberFP32* difference);
extern inline void bgc_cotes_number_exclude_fp64(const BgcCotesNumberFP64* base, const BgcCotesNumberFP64* excludant, BgcCotesNumberFP64* difference);
extern inline void bgc_cotes_number_get_rotation_matrix_fp32(const BgcCotesNumberFP32* number, BgcMatrix2x2FP32* matrix);
extern inline void bgc_cotes_number_get_rotation_matrix_fp64(const BgcCotesNumberFP64* number, BgcMatrix2x2FP64* matrix);
extern inline void bgc_cotes_number_get_reverse_matrix_fp32(const BgcCotesNumberFP32* number, BgcMatrix2x2FP32* matrix);
extern inline void bgc_cotes_number_get_reverse_matrix_fp64(const BgcCotesNumberFP64* number, BgcMatrix2x2FP64* matrix);
extern inline void bgc_cotes_number_turn_vector_fp32(const BgcCotesNumberFP32* number, const BgcVector2FP32* vector, BgcVector2FP32* result);
extern inline void bgc_cotes_number_turn_vector_fp64(const BgcCotesNumberFP64* number, const BgcVector2FP64* vector, BgcVector2FP64* result);
extern inline void bgc_cotes_number_turn_vector_back_fp32(const BgcCotesNumberFP32* number, const BgcVector2FP32* vector, BgcVector2FP32* result);
extern inline void bgc_cotes_number_turn_vector_back_fp64(const BgcCotesNumberFP64* number, const BgcVector2FP64* vector, BgcVector2FP64* result);
extern inline int bgc_cotes_number_are_close_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2);
extern inline int bgc_cotes_number_are_close_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2);
void _bgc_cotes_number_normalize_fp32(const float square_modulus, _BgcTwinCotesNumberFP32* twin)
{
// (square_modulus != square_modulus) is true when square_modulus is NaN
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
twin->cos = 1.0f;
twin->sin = 0.0f;
return;
}
const float multiplier = sqrtf(1.0f / square_modulus);
twin->cos *= multiplier;
twin->sin *= multiplier;
}
void _bgc_cotes_number_normalize_fp64(const double square_modulus, _BgcTwinCotesNumberFP64* twin)
{
// (square_modulus != square_modulus) is true when square_modulus is NaN
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
twin->cos = 1.0;
twin->sin = 0.0;
return;
}
const double multiplier = sqrt(1.0 / square_modulus);
twin->cos *= multiplier;
twin->sin *= multiplier;
}

View file

@ -0,0 +1,394 @@
#ifndef _BGC_COTES_NUMBER_H_
#define _BGC_COTES_NUMBER_H_
#include <math.h>
#include "utilities.h"
#include "angle.h"
#include "vector2.h"
#include "matrix2x2.h"
// =================== Types ==================== //
typedef struct
{
const float cos, sin;
} BgcCotesNumberFP32;
typedef struct
{
const double cos, sin;
} BgcCotesNumberFP64;
// ================= Dark Twins ================= //
typedef struct {
float cos, sin;
} _BgcTwinCotesNumberFP32;
typedef struct {
double cos, sin;
} _BgcTwinCotesNumberFP64;
// ================= Constants ================== //
extern const BgcCotesNumberFP32 BGC_IDLE_COTES_NUMBER_FP32;
extern const BgcCotesNumberFP64 BGC_IDLE_COTES_NUMBER_FP64;
// =================== Reset ==================== //
inline void bgc_cotes_number_reset_fp32(BgcCotesNumberFP32* number)
{
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)number;
twin->cos = 1.0f;
twin->sin = 0.0f;
}
inline void bgc_cotes_number_reset_fp64(BgcCotesNumberFP64* number)
{
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)number;
twin->cos = 1.0;
twin->sin = 0.0;
}
// ==================== Set ===================== //
void _bgc_cotes_number_normalize_fp32(const float square_modulus, _BgcTwinCotesNumberFP32* twin);
void _bgc_cotes_number_normalize_fp64(const double square_modulus, _BgcTwinCotesNumberFP64* twin);
inline void bgc_cotes_number_set_values_fp32(const float x1, const float x2, BgcCotesNumberFP32* number)
{
const float square_modulus = x1 * x1 + x2 * x2;
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)number;
twin->cos = x1;
twin->sin = x2;
if (!bgc_is_sqare_unit_fp32(square_modulus)) {
_bgc_cotes_number_normalize_fp32(square_modulus, twin);
}
}
inline void bgc_cotes_number_set_values_fp64(const double x1, const double x2, BgcCotesNumberFP64* number)
{
const double square_modulus = x1 * x1 + x2 * x2;
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)number;
twin->cos = x1;
twin->sin = x2;
if (!bgc_is_sqare_unit_fp64(square_modulus)) {
_bgc_cotes_number_normalize_fp64(square_modulus, twin);
}
}
// ================== Set Turn ================== //
inline void bgc_cotes_number_set_turn_fp32(const float angle, const BgcAngleUnitEnum unit, BgcCotesNumberFP32* number)
{
const float radians = bgc_angle_to_radians_fp32(angle, unit);
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)number;
twin->cos = cosf(radians);
twin->sin = sinf(radians);
}
inline void bgc_cotes_number_set_turn_fp64(const double angle, const BgcAngleUnitEnum unit, BgcCotesNumberFP64* number)
{
const double radians = bgc_angle_to_radians_fp64(angle, unit);
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)number;
twin->cos = cos(radians);
twin->sin = sin(radians);
}
// =================== Angle =================== //
inline float bgc_cotes_number_get_angle_fp32(const BgcCotesNumberFP32* number, const BgcAngleUnitEnum unit)
{
if (number->cos >= 1.0f - BGC_EPSYLON_FP32) {
return 0.0f;
}
if (number->cos <= -1.0f + BGC_EPSYLON_FP32) {
return bgc_angle_get_half_circle_fp32(unit);
}
if (number->sin >= 1.0f - BGC_EPSYLON_FP32) {
return bgc_angle_get_quater_circle_fp32(unit);
}
if (number->sin <= -1.0f + BGC_EPSYLON_FP32) {
return 0.75f * bgc_angle_get_full_circle_fp32(unit);
}
return bgc_radians_to_units_fp32(atan2f(number->sin, number->cos), unit);
}
inline double bgc_cotes_number_get_angle_fp64(const BgcCotesNumberFP64* number, const BgcAngleUnitEnum unit)
{
if (number->cos >= 1.0 - BGC_EPSYLON_FP64) {
return 0.0;
}
if (number->cos <= -1.0 + BGC_EPSYLON_FP64) {
return bgc_angle_get_half_circle_fp64(unit);
}
if (number->sin >= 1.0 - BGC_EPSYLON_FP64) {
return bgc_angle_get_quater_circle_fp64(unit);
}
if (number->sin <= -1.0 + BGC_EPSYLON_FP64) {
return 0.75 * bgc_angle_get_full_circle_fp64(unit);
}
return bgc_radians_to_units_fp64(atan2(number->sin, number->cos), unit);
}
// ==================== Copy ==================== //
inline void bgc_cotes_number_copy_fp32(const BgcCotesNumberFP32* source, BgcCotesNumberFP32* destination)
{
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)destination;
twin->cos = source->cos;
twin->sin = source->sin;
}
inline void bgc_cotes_number_copy_fp64(const BgcCotesNumberFP64* source, BgcCotesNumberFP64* destination)
{
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)destination;
twin->cos = source->cos;
twin->sin = source->sin;
}
// ==================== Swap ==================== //
inline void bgc_cotes_number_swap_fp32(BgcCotesNumberFP32* number1, BgcCotesNumberFP32* number2)
{
const float cos = number1->cos;
const float sin = number1->sin;
_BgcTwinCotesNumberFP32* twin1 = (_BgcTwinCotesNumberFP32*)number1;
twin1->cos = number2->cos;
twin1->sin = number2->sin;
_BgcTwinCotesNumberFP32* twin2 = (_BgcTwinCotesNumberFP32*)number2;
twin2->cos = cos;
twin2->sin = sin;
}
inline void bgc_cotes_number_swap_fp64(BgcCotesNumberFP64* number1, BgcCotesNumberFP64* number2)
{
const double cos = number1->cos;
const double sin = number1->sin;
_BgcTwinCotesNumberFP64* twin1 = (_BgcTwinCotesNumberFP64*)number1;
twin1->cos = number2->cos;
twin1->sin = number2->sin;
_BgcTwinCotesNumberFP64* twin2 = (_BgcTwinCotesNumberFP64*)number2;
twin2->cos = cos;
twin2->sin = sin;
}
// ================== Convert =================== //
inline void bgc_cotes_number_convert_fp64_to_fp32(const BgcCotesNumberFP64* source, BgcCotesNumberFP32* destination)
{
bgc_cotes_number_set_values_fp32((float)source->cos, (float)source->sin, destination);
}
inline void bgc_cotes_number_convert_fp32_to_fp64(const BgcCotesNumberFP32* source, BgcCotesNumberFP64* destination)
{
bgc_cotes_number_set_values_fp64((double)source->cos, (double)source->sin, destination);
}
// =================== Invert =================== //
inline void bgc_cotes_number_invert_fp32(const BgcCotesNumberFP32* number, BgcCotesNumberFP32* inverted)
{
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)inverted;
twin->cos = number->cos;
twin->sin = -number->sin;
}
inline void bgc_cotes_number_invert_fp64(const BgcCotesNumberFP64* number, BgcCotesNumberFP64* inverted)
{
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)inverted;
twin->cos = number->cos;
twin->sin = -number->sin;
}
// ================= Exponation ================= //
inline void bgc_cotes_number_get_exponation_fp32(const BgcCotesNumberFP32* base, const float exponent, BgcCotesNumberFP32* power)
{
const float power_angle = exponent * atan2f(base->sin, base->cos);
_BgcTwinCotesNumberFP32* twin = (_BgcTwinCotesNumberFP32*)power;
twin->cos = cosf(power_angle);
twin->sin = sinf(power_angle);
}
inline void bgc_cotes_number_get_exponation_fp64(const BgcCotesNumberFP64* base, const double exponent, BgcCotesNumberFP64* power)
{
const double power_angle = exponent * atan2(base->sin, base->cos);
_BgcTwinCotesNumberFP64* twin = (_BgcTwinCotesNumberFP64*)power;
twin->cos = cos(power_angle);
twin->sin = sin(power_angle);
}
// ================ Combination ================= //
inline void bgc_cotes_number_combine_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2, BgcCotesNumberFP32* result)
{
bgc_cotes_number_set_values_fp32(
number1->cos * number2->cos - number1->sin * number2->sin,
number1->cos * number2->sin + number1->sin * number2->cos,
result
);
}
inline void bgc_cotes_number_combine_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2, BgcCotesNumberFP64* result)
{
bgc_cotes_number_set_values_fp64(
number1->cos * number2->cos - number1->sin * number2->sin,
number1->cos * number2->sin + number1->sin * number2->cos,
result
);
}
// ================= Exclusion ================== //
inline void bgc_cotes_number_exclude_fp32(const BgcCotesNumberFP32* base, const BgcCotesNumberFP32* excludant, BgcCotesNumberFP32* difference)
{
bgc_cotes_number_set_values_fp32(
base->cos * excludant->cos + base->sin * excludant->sin,
base->sin * excludant->cos - base->cos * excludant->sin,
difference
);
}
inline void bgc_cotes_number_exclude_fp64(const BgcCotesNumberFP64* base, const BgcCotesNumberFP64* excludant, BgcCotesNumberFP64* difference)
{
bgc_cotes_number_set_values_fp64(
base->cos * excludant->cos + base->sin * excludant->sin,
base->sin * excludant->cos - base->cos * excludant->sin,
difference
);
}
// ============== Rotation Matrix =============== //
inline void bgc_cotes_number_get_rotation_matrix_fp32(const BgcCotesNumberFP32* number, BgcMatrix2x2FP32* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = -number->sin;
matrix->r2c1 = number->sin;
matrix->r2c2 = number->cos;
}
inline void bgc_cotes_number_get_rotation_matrix_fp64(const BgcCotesNumberFP64* number, BgcMatrix2x2FP64* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = -number->sin;
matrix->r2c1 = number->sin;
matrix->r2c2 = number->cos;
}
// ============== Reverse Matrix ================ //
inline void bgc_cotes_number_get_reverse_matrix_fp32(const BgcCotesNumberFP32* number, BgcMatrix2x2FP32* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = number->sin;
matrix->r2c1 = -number->sin;
matrix->r2c2 = number->cos;
}
inline void bgc_cotes_number_get_reverse_matrix_fp64(const BgcCotesNumberFP64* number, BgcMatrix2x2FP64* matrix)
{
matrix->r1c1 = number->cos;
matrix->r1c2 = number->sin;
matrix->r2c1 = -number->sin;
matrix->r2c2 = number->cos;
}
// ================ Turn Vector ================= //
inline void bgc_cotes_number_turn_vector_fp32(const BgcCotesNumberFP32* number, const BgcVector2FP32* vector, BgcVector2FP32* result)
{
const float x1 = number->cos * vector->x1 - number->sin * vector->x2;
const float x2 = number->sin * vector->x1 + number->cos * vector->x2;
result->x1 = x1;
result->x2 = x2;
}
inline void bgc_cotes_number_turn_vector_fp64(const BgcCotesNumberFP64* number, const BgcVector2FP64* vector, BgcVector2FP64* result)
{
const double x1 = number->cos * vector->x1 - number->sin * vector->x2;
const double x2 = number->sin * vector->x1 + number->cos * vector->x2;
result->x1 = x1;
result->x2 = x2;
}
// ============ Turn Vector Backward ============ //
inline void bgc_cotes_number_turn_vector_back_fp32(const BgcCotesNumberFP32* number, const BgcVector2FP32* vector, BgcVector2FP32* result)
{
const float x1 = number->sin * vector->x2 + number->cos * vector->x1;
const float x2 = number->cos * vector->x2 - number->sin * vector->x1;
result->x1 = x1;
result->x2 = x2;
}
inline void bgc_cotes_number_turn_vector_back_fp64(const BgcCotesNumberFP64* number, const BgcVector2FP64* vector, BgcVector2FP64* result)
{
const double x1 = number->sin * vector->x2 + number->cos * vector->x1;
const double x2 = number->cos * vector->x2 - number->sin * vector->x1;
result->x1 = x1;
result->x2 = x2;
}
// ================== Are Close ================= //
inline int bgc_cotes_number_are_close_fp32(const BgcCotesNumberFP32* number1, const BgcCotesNumberFP32* number2)
{
const float d_cos = number1->cos - number2->cos;
const float d_sin = number1->sin - number2->sin;
return d_cos * d_cos + d_sin * d_sin <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_cotes_number_are_close_fp64(const BgcCotesNumberFP64* number1, const BgcCotesNumberFP64* number2)
{
const double d_cos = number1->cos - number2->cos;
const double d_sin = number1->sin - number2->sin;
return d_cos * d_cos + d_sin * d_sin <= BGC_SQUARE_EPSYLON_FP64;
}
#endif

View file

@ -1,3 +1,4 @@
#include <math.h>
#include "quaternion.h"
extern inline void bgc_quaternion_reset_fp32(BgcQuaternionFP32* quaternion);
@ -63,8 +64,8 @@ extern inline void bgc_quaternion_multiply_fp64(const BgcQuaternionFP64* multipl
extern inline void bgc_quaternion_divide_fp32(const BgcQuaternionFP32* dividend, const float divisor, BgcQuaternionFP32* quotient);
extern inline void bgc_quaternion_divide_fp64(const BgcQuaternionFP64* dividend, const double divisor, BgcQuaternionFP64* quotient);
extern inline void bgc_quaternion_get_linear_interpolation_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, const float phase, BgcQuaternionFP32* interpolation);
extern inline void bgc_quaternion_get_linear_interpolation_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, const double phase, BgcQuaternionFP64* interpolation);
extern inline void bgc_quaternion_interpolate_linearly_fp32(const BgcQuaternionFP32* vector1, const BgcQuaternionFP32* vector2, const float phase, BgcQuaternionFP32* interpolation);
extern inline void bgc_quaternion_interpolate_linearly_fp64(const BgcQuaternionFP64* vector1, const BgcQuaternionFP64* vector2, const double phase, BgcQuaternionFP64* interpolation);
extern inline int bgc_quaternion_get_rotation_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation);
extern inline int bgc_quaternion_get_rotation_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation);
@ -72,5 +73,92 @@ extern inline int bgc_quaternion_get_rotation_matrix_fp64(const BgcQuaternionFP6
extern inline int bgc_quaternion_get_reverse_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* reverse);
extern inline int bgc_quaternion_get_reverse_matrix_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* reverse);
extern inline int bgc_quaternion_get_both_matrixes_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse);
extern inline int bgc_quaternion_get_both_matrixes_fp64(const BgcQuaternionFP64* quaternion, BgcMatrix3x3FP64* rotation, BgcMatrix3x3FP64* reverse);
extern inline int bgc_quaternion_are_close_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2);
extern inline int bgc_quaternion_are_close_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2);
// =============== Get Exponation =============== //
int bgc_quaternion_get_exponation_fp32(const BgcQuaternionFP32* base, const float exponent, BgcQuaternionFP32* power)
{
const float s0s0 = base->s0 * base->s0;
const float x1x1 = base->x1 * base->x1;
const float x2x2 = base->x2 * base->x2;
const float x3x3 = base->x3 * base->x3;
const float square_vector = x1x1 + (x2x2 + x3x3);
const float square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
// square_modulus != square_modulus means checking for NaN value at square_modulus
if (square_modulus != square_modulus) {
return 0;
}
if (square_vector <= BGC_SQUARE_EPSYLON_FP32) {
if (base->s0 < 0.0f) {
return 0;
}
power->s0 = powf(base->s0, exponent);
power->x1 = 0.0f;
power->x2 = 0.0f;
power->x3 = 0.0f;
return 1;
}
const float vector_modulus = sqrtf(square_vector);
const float power_angle = atan2f(vector_modulus, base->s0) * exponent;
const float power_modulus = powf(square_modulus, 0.5f * exponent);
const float multiplier = power_modulus * sinf(power_angle) / vector_modulus;
power->s0 = power_modulus * cosf(power_angle);
power->x1 = base->x1 * multiplier;
power->x2 = base->x2 * multiplier;
power->x3 = base->x3 * multiplier;
return 1;
}
int bgc_quaternion_get_exponation_fp64(const BgcQuaternionFP64* base, const double exponent, BgcQuaternionFP64* power)
{
const double s0s0 = base->s0 * base->s0;
const double x1x1 = base->x1 * base->x1;
const double x2x2 = base->x2 * base->x2;
const double x3x3 = base->x3 * base->x3;
const double square_vector = x1x1 + (x2x2 + x3x3);
const double square_modulus = (s0s0 + x1x1) + (x2x2 + x3x3);
// square_modulus != square_modulus means checking for NaN value at square_modulus
if (square_modulus != square_modulus) {
return 0;
}
if (square_vector <= BGC_SQUARE_EPSYLON_FP64) {
if (base->s0 < 0.0) {
return 0;
}
power->s0 = pow(base->s0, exponent);
power->x1 = 0.0;
power->x2 = 0.0;
power->x3 = 0.0;
return 1;
}
const double vector_modulus = sqrt(square_vector);
const double power_angle = atan2(vector_modulus, base->s0) * exponent;
const double power_modulus = pow(square_modulus, 0.5 * exponent);
const double multiplier = power_modulus * sin(power_angle) / vector_modulus;
power->s0 = power_modulus * cos(power_angle);
power->x1 = base->x1 * multiplier;
power->x2 = base->x2 * multiplier;
power->x3 = base->x3 * multiplier;
return 1;
}

View file

@ -473,9 +473,9 @@ inline void bgc_quaternion_divide_fp64(const BgcQuaternionFP64* dividend, const
bgc_quaternion_multiply_fp64(dividend, 1.0 / divisor, quotient);
}
// =================== Linear =================== //
// ============ Linear Interpolation ============ //
inline void bgc_quaternion_get_linear_interpolation_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2, const float phase, BgcQuaternionFP32* interpolation)
inline void bgc_quaternion_interpolate_linearly_fp32(const BgcQuaternionFP32* quaternion1, const BgcQuaternionFP32* quaternion2, const float phase, BgcQuaternionFP32* interpolation)
{
const float counterphase = 1.0f - phase;
@ -485,7 +485,7 @@ inline void bgc_quaternion_get_linear_interpolation_fp32(const BgcQuaternionFP32
interpolation->x3 = quaternion1->x3 * counterphase + quaternion2->x3 * phase;
}
inline void bgc_quaternion_get_linear_interpolation_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2, const double phase, BgcQuaternionFP64* interpolation)
inline void bgc_quaternion_interpolate_linearly_fp64(const BgcQuaternionFP64* quaternion1, const BgcQuaternionFP64* quaternion2, const double phase, BgcQuaternionFP64* interpolation)
{
const double counterphase = 1.0 - phase;
@ -495,6 +495,12 @@ inline void bgc_quaternion_get_linear_interpolation_fp64(const BgcQuaternionFP64
interpolation->x3 = quaternion1->x3 * counterphase + quaternion2->x3 * phase;
}
// =============== Get Exponation =============== //
int bgc_quaternion_get_exponation_fp32(const BgcQuaternionFP32* base, const float exponent, BgcQuaternionFP32* power);
int bgc_quaternion_get_exponation_fp64(const BgcQuaternionFP64* base, const double exponent, BgcQuaternionFP64* power);
// ============ Get Rotation Matrix ============= //
inline int bgc_quaternion_get_rotation_matrix_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation)
@ -659,6 +665,8 @@ inline int bgc_quaternion_get_reverse_matrix_fp64(const BgcQuaternionFP64* quate
return 1;
}
// ============= Get Both Matrixes ============== //
inline int bgc_quaternion_get_both_matrixes_fp32(const BgcQuaternionFP32* quaternion, BgcMatrix3x3FP32* rotation, BgcMatrix3x3FP32* reverse)
{
if (bgc_quaternion_get_reverse_matrix_fp32(quaternion, reverse)) {

View file

@ -47,7 +47,7 @@ inline void bgc_rotation3_set_values_fp32(const float x1, const float x2, const
rotation->axis.x2 = x2;
rotation->axis.x3 = x3;
if (bgc_vector3_normalize_fp32(&rotation->axis, &rotation->axis)) {
if (bgc_vector3_normalize_fp32(&rotation->axis)) {
rotation->radians = bgc_angle_to_radians_fp32(angle, unit);
}
else {
@ -62,7 +62,7 @@ inline void bgc_rotation3_set_values_fp64(const double x1, const double x2, cons
rotation->axis.x2 = x2;
rotation->axis.x3 = x3;
if (bgc_vector3_normalize_fp64(&rotation->axis, &rotation->axis)) {
if (bgc_vector3_normalize_fp64(&rotation->axis)) {
rotation->radians = bgc_angle_to_radians_fp64(angle, unit);
}
else {
@ -72,11 +72,9 @@ inline void bgc_rotation3_set_values_fp64(const double x1, const double x2, cons
inline void bgc_rotation3_set_with_axis_fp32(const BgcVector3FP32* axis, const float angle, const BgcAngleUnitEnum unit, BgcRotation3FP32* rotation)
{
rotation->axis.x1 = axis->x1;
rotation->axis.x2 = axis->x2;
rotation->axis.x3 = axis->x3;
bgc_vector3_copy_fp32(axis, &rotation->axis);
if (bgc_vector3_normalize_fp32(&rotation->axis, &rotation->axis)) {
if (bgc_vector3_normalize_fp32(&rotation->axis)) {
rotation->radians = bgc_angle_to_radians_fp32(angle, unit);
}
else {
@ -86,11 +84,9 @@ inline void bgc_rotation3_set_with_axis_fp32(const BgcVector3FP32* axis, const f
inline void bgc_rotation3_set_with_axis_fp64(const BgcVector3FP64* axis, const double angle, const BgcAngleUnitEnum unit, BgcRotation3FP64* rotation)
{
rotation->axis.x1 = axis->x1;
rotation->axis.x2 = axis->x2;
rotation->axis.x3 = axis->x3;
bgc_vector3_copy_fp64(axis, &rotation->axis);
if (bgc_vector3_normalize_fp64(&rotation->axis, &rotation->axis)) {
if (bgc_vector3_normalize_fp64(&rotation->axis)) {
rotation->radians = bgc_angle_to_radians_fp64(angle, unit);
}
else {

129
basic-geometry/slerp.c Normal file
View file

@ -0,0 +1,129 @@
#include "./slerp.h"
extern inline void bgc_slerp_reset_fp32(BgcSlerpFP32* slerp);
extern inline void bgc_slerp_reset_fp64(BgcSlerpFP64* slerp);
extern inline bgc_slerp_get_turn_for_phase_fp32(const BgcSlerpFP32* slerp, const float phase, BgcVersorFP32* result);
extern inline bgc_slerp_get_turn_for_phase_fp64(const BgcSlerpFP64* slerp, const double phase, BgcVersorFP64* result);
void bgc_slerp_make_full_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, BgcSlerpFP32* slerp)
{
BgcVersorFP32 delta;
bgc_versor_exclude_fp32(end, start, &delta);
const float square_vector = delta.x1 * delta.x1 + delta.x2 * delta.x2 + delta.x3 * delta.x3;
if (square_vector <= BGC_SQUARE_EPSYLON_FP32 || square_vector != square_vector) {
bgc_slerp_reset_fp32(slerp);
return;
}
const float vector_modulus = sqrtf(square_vector);
slerp->radians = atan2f(vector_modulus, delta.s0);
const float mutliplier = 1.0f / vector_modulus;
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_sin_weight = -mutliplier * (delta.x1 * start->x1 + delta.x2 * start->x2 + delta.x3 * start->x3);
slerp->x1_sin_weight = mutliplier * (delta.x1 * start->s0 + delta.x2 * start->x3 - delta.x3 * start->x2);
slerp->x2_sin_weight = mutliplier * (delta.x2 * start->s0 - delta.x1 * start->x3 + delta.x3 * start->x1);
slerp->x3_sin_weight = mutliplier * (delta.x3 * start->s0 - delta.x2 * start->x1 + delta.x1 * start->x2);
}
void bgc_slerp_make_full_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, BgcSlerpFP64* slerp)
{
BgcVersorFP64 delta;
bgc_versor_exclude_fp64(end, start, &delta);
const double square_vector = delta.x1 * delta.x1 + delta.x2 * delta.x2 + delta.x3 * delta.x3;
if (square_vector <= BGC_SQUARE_EPSYLON_FP64 || square_vector != square_vector) {
bgc_slerp_reset_fp64(slerp);
return;
}
const double vector_modulus = sqrt(square_vector);
slerp->radians = atan2(vector_modulus, delta.s0);
const double mutliplier = 1.0 / vector_modulus;
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_sin_weight = -mutliplier * (delta.x1 * start->x1 + delta.x2 * start->x2 + delta.x3 * start->x3);
slerp->x1_sin_weight = mutliplier * (delta.x1 * start->s0 + delta.x2 * start->x3 - delta.x3 * start->x2);
slerp->x2_sin_weight = mutliplier * (delta.x2 * start->s0 - delta.x1 * start->x3 + delta.x3 * start->x1);
slerp->x3_sin_weight = mutliplier * (delta.x3 * start->s0 - delta.x2 * start->x1 + delta.x1 * start->x2);
}
void bgc_slerp_make_shortened_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, BgcSlerpFP32* slerp)
{
BgcVersorFP32 delta;
bgc_versor_exclude_fp32(end, start, &delta);
bgc_versor_shorten_fp32(&delta, &delta);
const float square_vector = delta.x1 * delta.x1 + delta.x2 * delta.x2 + delta.x3 * delta.x3;
if (square_vector <= BGC_SQUARE_EPSYLON_FP32 || square_vector != square_vector) {
bgc_slerp_reset_fp32(slerp);
return;
}
const float vector_modulus = sqrtf(square_vector);
slerp->radians = atan2f(vector_modulus, delta.s0);
const float mutliplier = 1.0f / vector_modulus;
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_sin_weight = -mutliplier * (delta.x1 * start->x1 + delta.x2 * start->x2 + delta.x3 * start->x3);
slerp->x1_sin_weight = mutliplier * (delta.x1 * start->s0 + delta.x2 * start->x3 - delta.x3 * start->x2);
slerp->x2_sin_weight = mutliplier * (delta.x2 * start->s0 - delta.x1 * start->x3 + delta.x3 * start->x1);
slerp->x3_sin_weight = mutliplier * (delta.x3 * start->s0 - delta.x2 * start->x1 + delta.x1 * start->x2);
}
void bgc_slerp_make_shortened_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, BgcSlerpFP64* slerp)
{
BgcVersorFP64 delta;
bgc_versor_exclude_fp64(end, start, &delta);
bgc_versor_shorten_fp64(&delta, &delta);
const double square_vector = delta.x1 * delta.x1 + delta.x2 * delta.x2 + delta.x3 * delta.x3;
if (square_vector <= BGC_SQUARE_EPSYLON_FP64 || square_vector != square_vector) {
bgc_slerp_reset_fp64(slerp);
return;
}
const double vector_modulus = sqrt(square_vector);
slerp->radians = atan2(vector_modulus, delta.s0);
const double mutliplier = 1.0 / vector_modulus;
slerp->s0_cos_weight = start->s0;
slerp->x1_cos_weight = start->x1;
slerp->x2_cos_weight = start->x2;
slerp->x3_cos_weight = start->x3;
slerp->s0_sin_weight = -mutliplier * (delta.x1 * start->x1 + delta.x2 * start->x2 + delta.x3 * start->x3);
slerp->x1_sin_weight = mutliplier * (delta.x1 * start->s0 + delta.x2 * start->x3 - delta.x3 * start->x2);
slerp->x2_sin_weight = mutliplier * (delta.x2 * start->s0 - delta.x1 * start->x3 + delta.x3 * start->x1);
slerp->x3_sin_weight = mutliplier * (delta.x3 * start->s0 - delta.x2 * start->x1 + delta.x1 * start->x2);
}

94
basic-geometry/slerp.h Normal file
View file

@ -0,0 +1,94 @@
#ifndef _BGC_VERSOR_SLERP_H_
#define _BGC_VERSOR_SLERP_H_
#include "./versor.h"
typedef struct {
float s0_cos_weight, s0_sin_weight;
float x1_cos_weight, x1_sin_weight;
float x2_cos_weight, x2_sin_weight;
float x3_cos_weight, x3_sin_weight;
float radians;
} BgcSlerpFP32;
typedef struct {
double s0_cos_weight, s0_sin_weight;
double x1_cos_weight, x1_sin_weight;
double x2_cos_weight, x2_sin_weight;
double x3_cos_weight, x3_sin_weight;
double radians;
} BgcSlerpFP64;
inline void bgc_slerp_reset_fp32(BgcSlerpFP32* slerp)
{
slerp->s0_cos_weight = 1.0f;
slerp->s0_sin_weight = 0.0f;
slerp->x1_cos_weight = 0.0f;
slerp->x1_sin_weight = 0.0f;
slerp->x2_cos_weight = 0.0f;
slerp->x2_sin_weight = 0.0f;
slerp->x3_cos_weight = 0.0f;
slerp->x3_sin_weight = 0.0f;
slerp->radians = 0.0f;
}
inline void bgc_slerp_reset_fp64(BgcSlerpFP64* slerp)
{
slerp->s0_cos_weight = 1.0;
slerp->s0_sin_weight = 0.0;
slerp->x1_cos_weight = 0.0;
slerp->x1_sin_weight = 0.0;
slerp->x2_cos_weight = 0.0;
slerp->x2_sin_weight = 0.0;
slerp->x3_cos_weight = 0.0;
slerp->x3_sin_weight = 0.0;
slerp->radians = 0.0;
}
void bgc_slerp_make_full_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, BgcSlerpFP32* slerp);
void bgc_slerp_make_full_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, BgcSlerpFP64* slerp);
void bgc_slerp_make_shortened_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, BgcSlerpFP32* slerp);
void bgc_slerp_make_shortened_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, BgcSlerpFP64* slerp);
inline bgc_slerp_get_turn_for_phase_fp32(const BgcSlerpFP32* slerp, const float phase, BgcVersorFP32* result)
{
const float angle = slerp->radians * phase;
const float cosine = cosf(angle);
const float sine = sinf(angle);
bgc_versor_set_values_fp32(
slerp->s0_cos_weight * cosine + slerp->s0_sin_weight * sine,
slerp->x1_cos_weight * cosine + slerp->x1_sin_weight * sine,
slerp->x2_cos_weight * cosine + slerp->x2_sin_weight * sine,
slerp->x3_cos_weight * cosine + slerp->x3_sin_weight * sine,
result
);
}
inline bgc_slerp_get_turn_for_phase_fp64(const BgcSlerpFP64* slerp, const double phase, BgcVersorFP64* result)
{
const double angle = slerp->radians * phase;
const double cosine = cos(angle);
const double sine = sin(angle);
bgc_versor_set_values_fp64(
slerp->s0_cos_weight * cosine + slerp->s0_sin_weight * sine,
slerp->x1_cos_weight * cosine + slerp->x1_sin_weight * sine,
slerp->x2_cos_weight * cosine + slerp->x2_sin_weight * sine,
slerp->x3_cos_weight * cosine + slerp->x3_sin_weight * sine,
result
);
}
#endif

View file

@ -1,79 +0,0 @@
#include "tangent-pair.h"
const BgcTangentPairFP32 BGC_IDLE_TANGENT_PAIR_FP32 = { 1.0f, 0.0f };
const BgcTangentPairFP64 BGC_IDLE_TANGENT_PAIR_FP64 = { 1.0, 0.0 };
extern inline void bgc_tangent_pair_reset_fp32(BgcTangentPairFP32* tangent);
extern inline void bgc_tangent_pair_reset_fp64(BgcTangentPairFP64* tangent);
extern inline void bgc_tangent_pair_set_values_fp32(const float x1, const float x2, BgcTangentPairFP32* tangent);
extern inline void bgc_tangent_pair_set_values_fp64(const double x1, const double x2, BgcTangentPairFP64* tangent);
extern inline void bgc_tangent_pair_set_turn_fp32(const float angle, const BgcAngleUnitEnum unit, BgcTangentPairFP32* tangent);
extern inline void bgc_tangent_pair_set_turn_fp64(const double angle, const BgcAngleUnitEnum unit, BgcTangentPairFP64* tangent);
extern inline float bgc_tangent_pair_get_angle_fp32(const BgcTangentPairFP32* tangent, const BgcAngleUnitEnum unit);
extern inline double bgc_tangent_pair_get_angle_fp64(const BgcTangentPairFP64* tangent, const BgcAngleUnitEnum unit);
extern inline void bgc_tangent_pair_copy_fp32(const BgcTangentPairFP32* source, BgcTangentPairFP32* destination);
extern inline void bgc_tangent_pair_copy_fp64(const BgcTangentPairFP64* source, BgcTangentPairFP64* destination);
extern inline void bgc_tangent_pair_swap_fp32(BgcTangentPairFP32* tangent1, BgcTangentPairFP32* tangent2);
extern inline void bgc_tangent_pair_swap_fp64(BgcTangentPairFP64* tangent1, BgcTangentPairFP64* tangent2);
extern inline void bgc_tangent_pair_convert_fp64_to_fp32(const BgcTangentPairFP64* source, BgcTangentPairFP32* destination);
extern inline void bgc_tangent_pair_convert_fp32_to_fp64(const BgcTangentPairFP32* source, BgcTangentPairFP64* destination);
extern inline void bgc_tangent_pair_invert_fp32(const BgcTangentPairFP32* tangent, BgcTangentPairFP32* inverted);
extern inline void bgc_tangent_pair_invert_fp64(const BgcTangentPairFP64* tangent, BgcTangentPairFP64* inverted);
extern inline void bgc_tangent_pair_combine_fp32(const BgcTangentPairFP32* tangent1, const BgcTangentPairFP32* tangent2, BgcTangentPairFP32* result);
extern inline void bgc_tangent_pair_combine_fp64(const BgcTangentPairFP64* tangent1, const BgcTangentPairFP64* tangent2, BgcTangentPairFP64* result);
extern inline void bgc_tangent_pair_get_rotation_matrix_fp32(const BgcTangentPairFP32* tangent, BgcMatrix2x2FP32* matrix);
extern inline void bgc_tangent_pair_get_rotation_matrix_fp64(const BgcTangentPairFP64* tangent, BgcMatrix2x2FP64* matrix);
extern inline void bgc_tangent_pair_get_reverse_matrix_fp32(const BgcTangentPairFP32* tangent, BgcMatrix2x2FP32* matrix);
extern inline void bgc_tangent_pair_get_reverse_matrix_fp64(const BgcTangentPairFP64* tangent, BgcMatrix2x2FP64* matrix);
extern inline void bgc_tangent_pair_turn_vector_fp32(const BgcTangentPairFP32* tangent, const BgcVector2FP32* vector, BgcVector2FP32* result);
extern inline void bgc_tangent_pair_turn_vector_fp64(const BgcTangentPairFP64* tangent, const BgcVector2FP64* vector, BgcVector2FP64* result);
extern inline void bgc_tangent_pair_turn_vector_back_fp32(const BgcTangentPairFP32* tangent, const BgcVector2FP32* vector, BgcVector2FP32* result);
extern inline void bgc_tangent_pair_turn_vector_back_fp64(const BgcTangentPairFP64* tangent, const BgcVector2FP64* vector, BgcVector2FP64* result);
extern inline int bgc_tangent_pair_are_close_fp32(const BgcTangentPairFP32* tangent1, const BgcTangentPairFP32* tangent2);
extern inline int bgc_tangent_pair_are_close_fp64(const BgcTangentPairFP64* tangent1, const BgcTangentPairFP64* tangent2);
void _bgc_tangent_pair_normalize_fp32(const float square_modulus, _BgcTwinTangentPairFP32* twin)
{
// (square_modulus != square_modulus) is true when square_modulus is NaN
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
twin->cos = 1.0f;
twin->sin = 0.0f;
return;
}
const float multiplier = sqrtf(1.0f / square_modulus);
twin->cos *= multiplier;
twin->sin *= multiplier;
}
void _bgc_tangent_pair_normalize_fp64(const double square_modulus, _BgcTwinTangentPairFP64* twin)
{
// (square_modulus != square_modulus) is true when square_modulus is NaN
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
twin->cos = 1.0;
twin->sin = 0.0;
return;
}
const double multiplier = sqrt(1.0 / square_modulus);
twin->cos *= multiplier;
twin->sin *= multiplier;
}

View file

@ -1,352 +0,0 @@
#ifndef _bgc_tangent_pair_H_
#define _bgc_tangent_pair_H_
#include <math.h>
#include "utilities.h"
#include "angle.h"
#include "vector2.h"
#include "matrix2x2.h"
// =================== Types ==================== //
typedef struct
{
const float cos, sin;
} BgcTangentPairFP32;
typedef struct
{
const double cos, sin;
} BgcTangentPairFP64;
// ================= Dark Twins ================= //
typedef struct {
float cos, sin;
} _BgcTwinTangentPairFP32;
typedef struct {
double cos, sin;
} _BgcTwinTangentPairFP64;
// ================= Constants ================== //
extern const BgcTangentPairFP32 BGC_IDLE_TANGENT_PAIR_FP32;
extern const BgcTangentPairFP64 BGC_IDLE_TANGENT_PAIR_FP64;
// =================== Reset ==================== //
inline void bgc_tangent_pair_reset_fp32(BgcTangentPairFP32* tangent)
{
_BgcTwinTangentPairFP32* twin = (_BgcTwinTangentPairFP32*)tangent;
twin->cos = 1.0f;
twin->sin = 0.0f;
}
inline void bgc_tangent_pair_reset_fp64(BgcTangentPairFP64* tangent)
{
_BgcTwinTangentPairFP64* twin = (_BgcTwinTangentPairFP64*)tangent;
twin->cos = 1.0;
twin->sin = 0.0;
}
// ==================== Set ===================== //
void _bgc_tangent_pair_normalize_fp32(const float square_modulus, _BgcTwinTangentPairFP32* twin);
void _bgc_tangent_pair_normalize_fp64(const double square_modulus, _BgcTwinTangentPairFP64* twin);
inline void bgc_tangent_pair_set_values_fp32(const float x1, const float x2, BgcTangentPairFP32* tangent)
{
const float square_modulus = x1 * x1 + x2 * x2;
_BgcTwinTangentPairFP32* twin = (_BgcTwinTangentPairFP32*)tangent;
twin->cos = x1;
twin->sin = x2;
if (!bgc_is_sqare_unit_fp32(square_modulus)) {
_bgc_tangent_pair_normalize_fp32(square_modulus, twin);
}
}
inline void bgc_tangent_pair_set_values_fp64(const double x1, const double x2, BgcTangentPairFP64* tangent)
{
const double square_modulus = x1 * x1 + x2 * x2;
_BgcTwinTangentPairFP64* twin = (_BgcTwinTangentPairFP64*)tangent;
twin->cos = x1;
twin->sin = x2;
if (!bgc_is_sqare_unit_fp64(square_modulus)) {
_bgc_tangent_pair_normalize_fp64(square_modulus, twin);
}
}
// ================== Set Turn ================== //
inline void bgc_tangent_pair_set_turn_fp32(const float angle, const BgcAngleUnitEnum unit, BgcTangentPairFP32* tangent)
{
const float radians = bgc_angle_to_radians_fp32(angle, unit);
_BgcTwinTangentPairFP32* twin = (_BgcTwinTangentPairFP32*)tangent;
twin->cos = cosf(radians);
twin->sin = sinf(radians);
}
inline void bgc_tangent_pair_set_turn_fp64(const double angle, const BgcAngleUnitEnum unit, BgcTangentPairFP64* tangent)
{
const double radians = bgc_angle_to_radians_fp64(angle, unit);
_BgcTwinTangentPairFP64* twin = (_BgcTwinTangentPairFP64*)tangent;
twin->cos = cos(radians);
twin->sin = sin(radians);
}
// =================== Angle =================== //
inline float bgc_tangent_pair_get_angle_fp32(const BgcTangentPairFP32* tangent, const BgcAngleUnitEnum unit)
{
if (tangent->cos >= 1.0f - BGC_EPSYLON_FP32) {
return 0.0f;
}
if (tangent->cos <= -1.0f + BGC_EPSYLON_FP32) {
return bgc_angle_get_half_circle_fp32(unit);
}
if (tangent->sin >= 1.0f - BGC_EPSYLON_FP32) {
return bgc_angle_get_quater_circle_fp32(unit);
}
if (tangent->sin <= -1.0f + BGC_EPSYLON_FP32) {
return 0.75f * bgc_angle_get_full_circle_fp32(unit);
}
return bgc_radians_to_units_fp32(atan2f(tangent->sin, tangent->cos), unit);
}
inline double bgc_tangent_pair_get_angle_fp64(const BgcTangentPairFP64* tangent, const BgcAngleUnitEnum unit)
{
if (tangent->cos >= 1.0 - BGC_EPSYLON_FP64) {
return 0.0;
}
if (tangent->cos <= -1.0 + BGC_EPSYLON_FP64) {
return bgc_angle_get_half_circle_fp64(unit);
}
if (tangent->sin >= 1.0 - BGC_EPSYLON_FP64) {
return bgc_angle_get_quater_circle_fp64(unit);
}
if (tangent->sin <= -1.0 + BGC_EPSYLON_FP64) {
return 0.75 * bgc_angle_get_full_circle_fp64(unit);
}
return bgc_radians_to_units_fp64(atan2(tangent->sin, tangent->cos), unit);
}
// ==================== Copy ==================== //
inline void bgc_tangent_pair_copy_fp32(const BgcTangentPairFP32* source, BgcTangentPairFP32* destination)
{
_BgcTwinTangentPairFP32* twin = (_BgcTwinTangentPairFP32*)destination;
twin->cos = source->cos;
twin->sin = source->sin;
}
inline void bgc_tangent_pair_copy_fp64(const BgcTangentPairFP64* source, BgcTangentPairFP64* destination)
{
_BgcTwinTangentPairFP64* twin = (_BgcTwinTangentPairFP64*)destination;
twin->cos = source->cos;
twin->sin = source->sin;
}
// ==================== Swap ==================== //
inline void bgc_tangent_pair_swap_fp32(BgcTangentPairFP32* tangent1, BgcTangentPairFP32* tangent2)
{
const float cos = tangent1->cos;
const float sin = tangent1->sin;
_BgcTwinTangentPairFP32* twin1 = (_BgcTwinTangentPairFP32*)tangent1;
twin1->cos = tangent2->cos;
twin1->sin = tangent2->sin;
_BgcTwinTangentPairFP32* twin2 = (_BgcTwinTangentPairFP32*)tangent2;
twin2->cos = cos;
twin2->sin = sin;
}
inline void bgc_tangent_pair_swap_fp64(BgcTangentPairFP64* tangent1, BgcTangentPairFP64* tangent2)
{
const double cos = tangent1->cos;
const double sin = tangent1->sin;
_BgcTwinTangentPairFP64* twin1 = (_BgcTwinTangentPairFP64*)tangent1;
twin1->cos = tangent2->cos;
twin1->sin = tangent2->sin;
_BgcTwinTangentPairFP64* twin2 = (_BgcTwinTangentPairFP64*)tangent2;
twin2->cos = cos;
twin2->sin = sin;
}
// ================== Convert =================== //
inline void bgc_tangent_pair_convert_fp64_to_fp32(const BgcTangentPairFP64* source, BgcTangentPairFP32* destination)
{
bgc_tangent_pair_set_values_fp32((float)source->cos, (float)source->sin, destination);
}
inline void bgc_tangent_pair_convert_fp32_to_fp64(const BgcTangentPairFP32* source, BgcTangentPairFP64* destination)
{
bgc_tangent_pair_set_values_fp64((double)source->cos, (double)source->sin, destination);
}
// =================== Invert =================== //
inline void bgc_tangent_pair_invert_fp32(const BgcTangentPairFP32* tangent, BgcTangentPairFP32* inverted)
{
_BgcTwinTangentPairFP32* twin = (_BgcTwinTangentPairFP32*)inverted;
twin->cos = tangent->cos;
twin->sin = -tangent->sin;
}
inline void bgc_tangent_pair_invert_fp64(const BgcTangentPairFP64* tangent, BgcTangentPairFP64* inverted)
{
_BgcTwinTangentPairFP64* twin = (_BgcTwinTangentPairFP64*)inverted;
twin->cos = tangent->cos;
twin->sin = -tangent->sin;
}
// ================ Combination ================= //
inline void bgc_tangent_pair_combine_fp32(const BgcTangentPairFP32* tangent1, const BgcTangentPairFP32* tangent2, BgcTangentPairFP32* result)
{
bgc_tangent_pair_set_values_fp32(
tangent1->cos * tangent2->cos - tangent1->sin * tangent2->sin,
tangent1->cos * tangent2->sin + tangent1->sin * tangent2->cos,
result
);
}
inline void bgc_tangent_pair_combine_fp64(const BgcTangentPairFP64* tangent1, const BgcTangentPairFP64* tangent2, BgcTangentPairFP64* result)
{
bgc_tangent_pair_set_values_fp64(
tangent1->cos * tangent2->cos - tangent1->sin * tangent2->sin,
tangent1->cos * tangent2->sin + tangent1->sin * tangent2->cos,
result
);
}
// ============== Rotation Matrix =============== //
inline void bgc_tangent_pair_get_rotation_matrix_fp32(const BgcTangentPairFP32* tangent, BgcMatrix2x2FP32* matrix)
{
matrix->r1c1 = tangent->cos;
matrix->r1c2 = -tangent->sin;
matrix->r2c1 = tangent->sin;
matrix->r2c2 = tangent->cos;
}
inline void bgc_tangent_pair_get_rotation_matrix_fp64(const BgcTangentPairFP64* tangent, BgcMatrix2x2FP64* matrix)
{
matrix->r1c1 = tangent->cos;
matrix->r1c2 = -tangent->sin;
matrix->r2c1 = tangent->sin;
matrix->r2c2 = tangent->cos;
}
// ============== Reverse Matrix ================ //
inline void bgc_tangent_pair_get_reverse_matrix_fp32(const BgcTangentPairFP32* tangent, BgcMatrix2x2FP32* matrix)
{
matrix->r1c1 = tangent->cos;
matrix->r1c2 = tangent->sin;
matrix->r2c1 = -tangent->sin;
matrix->r2c2 = tangent->cos;
}
inline void bgc_tangent_pair_get_reverse_matrix_fp64(const BgcTangentPairFP64* tangent, BgcMatrix2x2FP64* matrix)
{
matrix->r1c1 = tangent->cos;
matrix->r1c2 = tangent->sin;
matrix->r2c1 = -tangent->sin;
matrix->r2c2 = tangent->cos;
}
// ================ Turn Vector ================= //
inline void bgc_tangent_pair_turn_vector_fp32(const BgcTangentPairFP32* tangent, const BgcVector2FP32* vector, BgcVector2FP32* result)
{
const float x1 = tangent->cos * vector->x1 - tangent->sin * vector->x2;
const float x2 = tangent->sin * vector->x1 + tangent->cos * vector->x2;
result->x1 = x1;
result->x2 = x2;
}
inline void bgc_tangent_pair_turn_vector_fp64(const BgcTangentPairFP64* tangent, const BgcVector2FP64* vector, BgcVector2FP64* result)
{
const double x1 = tangent->cos * vector->x1 - tangent->sin * vector->x2;
const double x2 = tangent->sin * vector->x1 + tangent->cos * vector->x2;
result->x1 = x1;
result->x2 = x2;
}
// ============ Turn Vector Backward ============ //
inline void bgc_tangent_pair_turn_vector_back_fp32(const BgcTangentPairFP32* tangent, const BgcVector2FP32* vector, BgcVector2FP32* result)
{
const float x1 = tangent->sin * vector->x2 + tangent->cos * vector->x1;
const float x2 = tangent->cos * vector->x2 - tangent->sin * vector->x1;
result->x1 = x1;
result->x2 = x2;
}
inline void bgc_tangent_pair_turn_vector_back_fp64(const BgcTangentPairFP64* tangent, const BgcVector2FP64* vector, BgcVector2FP64* result)
{
const double x1 = tangent->sin * vector->x2 + tangent->cos * vector->x1;
const double x2 = tangent->cos * vector->x2 - tangent->sin * vector->x1;
result->x1 = x1;
result->x2 = x2;
}
// ================== Are Close ================= //
inline int bgc_tangent_pair_are_close_fp32(const BgcTangentPairFP32* tangent1, const BgcTangentPairFP32* tangent2)
{
const float d_cos = tangent1->cos - tangent2->cos;
const float d_sin = tangent1->sin - tangent2->sin;
return d_cos * d_cos + d_sin * d_sin <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_tangent_pair_are_close_fp64(const BgcTangentPairFP64* tangent1, const BgcTangentPairFP64* tangent2)
{
const double d_cos = tangent1->cos - tangent2->cos;
const double d_sin = tangent1->sin - tangent2->sin;
return d_cos * d_cos + d_sin * d_sin <= BGC_SQUARE_EPSYLON_FP64;
}
#endif

View file

@ -1,5 +1,6 @@
#include "utilities.h"
extern inline int bgc_is_correct_direction(const int direction);
extern inline int bgc_is_zero_fp32(const float square_value);
extern inline int bgc_is_zero_fp64(const double square_value);

View file

@ -4,20 +4,22 @@
#define BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 1.0f
#define BGC_EPSYLON_FP32 4.76837E-7f
#define BGC_SQUARE_EPSYLON_FP32 2.27373906E-13f
#define BGC_SQUARE_EPSYLON_FP32 (BGC_EPSYLON_FP32 * BGC_EPSYLON_FP32)
#define BGC_ONE_THIRD_FP32 0.3333333333f
#define BGC_ONE_SIXTH_FP32 0.1666666667f
#define BGC_ONE_SEVENTH_FP32 0.142857142857f
#define BGC_ONE_NINETH_FP32 0.1111111111f
#define BGC_ARCCOSINE_PRECISION_LIMIT_FP32 0.70711f
#define BGC_GOLDEN_RATIO_HIGH_FP32 1.618034f
#define BGC_GOLDEN_RATIO_LOW_FP32 0.618034f
#define BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 1.0
#define BGC_EPSYLON_FP64 4.996003611E-14
#define BGC_SQUARE_EPSYLON_FP64 2.496005208112504E-27
#define BGC_SQUARE_EPSYLON_FP64 (BGC_EPSYLON_FP64 * BGC_EPSYLON_FP64)
#define BGC_ONE_THIRD_FP64 0.3333333333333333333
#define BGC_ONE_SIXTH_FP64 0.1666666666666666667
@ -27,6 +29,20 @@
#define BGC_GOLDEN_RATIO_HIGH_FP64 1.61803398874989485
#define BGC_GOLDEN_RATIO_LOW_FP64 0.61803398874989485
#define BGC_SUCCESS 0
#define BGC_FAILED -1
#define BGC_DIRECTION_X1 1
#define BGC_DIRECTION_X2 2
#define BGC_DIRECTION_X3 3
inline int bgc_is_correct_direction(const int direction)
{
return direction == BGC_DIRECTION_X1 || direction == -BGC_DIRECTION_X1
|| direction == BGC_DIRECTION_X2 || direction == -BGC_DIRECTION_X2
|| direction == BGC_DIRECTION_X3 || direction == -BGC_DIRECTION_X3;
}
inline int bgc_is_zero_fp32(const float value)
{
return (-BGC_EPSYLON_FP32 <= value) && (value <= BGC_EPSYLON_FP32);

View file

@ -6,6 +6,9 @@ extern inline void bgc_vector2_reset_fp64(BgcVector2FP64* vector);
extern inline void bgc_vector2_set_values_fp32(const float x1, const float x2, BgcVector2FP32* destination);
extern inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVector2FP64* destination);
extern inline int bgc_vector2_get_direction_fp32(const int direction, BgcVector2FP32* vector);
extern inline int bgc_vector2_get_direction_fp64(const int direction, BgcVector2FP64* vector);
extern inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector);
extern inline double bgc_vector2_get_square_modulus_fp64(const BgcVector2FP64* vector);
@ -33,12 +36,6 @@ extern inline void bgc_vector2_reverse_fp64(const BgcVector2FP64* vector, BgcVec
extern inline int bgc_vector2_normalize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* normalized);
extern inline int bgc_vector2_normalize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* normalized);
extern inline void bgc_vector2_complex_conjugate_fp32(const BgcVector2FP32* vector, BgcVector2FP32* conjugate);
extern inline void bgc_vector2_complex_conjugate_fp64(const BgcVector2FP64* vector, BgcVector2FP64* conjugate);
extern inline int bgc_vector2_complex_invert_fp32(const BgcVector2FP32* vector, BgcVector2FP32* inverted);
extern inline int bgc_vector2_complex_invert_fp64(const BgcVector2FP64* vector, BgcVector2FP64* inverted);
extern inline void bgc_vector2_add_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* sum);
extern inline void bgc_vector2_add_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* sum);
@ -63,8 +60,8 @@ extern inline void bgc_vector2_get_mean_of_two_fp64(const BgcVector2FP64* vector
extern inline void bgc_vector2_get_mean_of_three_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcVector2FP32* vector3, BgcVector2FP32* mean);
extern inline void bgc_vector2_get_mean_of_three_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcVector2FP64* vector3, BgcVector2FP64* mean);
extern inline void bgc_vector2_get_linear_interpolation_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation);
extern inline void bgc_vector2_get_linear_interpolation_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation);
extern inline void bgc_vector2_interpolate_linearly_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation);
extern inline void bgc_vector2_interpolate_linearly_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation);
extern inline void bgc_vector2_minimize_fp32(const BgcVector2FP32* vector, BgcVector2FP32* minimal);
extern inline void bgc_vector2_minimize_fp64(const BgcVector2FP64* vector, BgcVector2FP64* minimal);
@ -78,12 +75,6 @@ extern inline double bgc_vector2_get_scalar_product_fp64(const BgcVector2FP64* v
extern inline float bgc_vector2_get_cross_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline double bgc_vector2_get_cross_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
extern inline void bgc_vector2_get_complex_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* product);
extern inline void bgc_vector2_get_complex_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* product);
extern inline int bgc_vector2_get_complex_ratio_fp32(const BgcVector2FP32* divident, const BgcVector2FP32* divisor, BgcVector2FP32* quotient);
extern inline int bgc_vector2_get_complex_ratio_fp64(const BgcVector2FP64* divident, const BgcVector2FP64* divisor, BgcVector2FP64* quotient);
extern inline float bgc_vector2_get_square_distance_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline double bgc_vector2_get_square_distance_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
@ -96,100 +87,50 @@ extern inline int bgc_vector2_are_close_enough_fp64(const BgcVector2FP64* vector
extern inline int bgc_vector2_are_close_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2);
extern inline int bgc_vector2_are_close_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2);
// =============== Complex Power ================ //
void bgc_vector2_get_complex_power_fp32(const BgcVector2FP32* base, const BgcVector2FP32* power, BgcVector2FP32* result)
{
const float base_square_modulus = bgc_vector2_get_square_modulus_fp32(base);
if (base_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
result->x1 = 0.0f;
result->x2 = 0.0f;
return;
}
const float log_modulus = logf(base_square_modulus) * 0.5f;
const float angle = atan2f(base->x2, base->x1);
const float result_modulus = expf(power->x1 * log_modulus - power->x2 * angle);
const float result_angle = power->x1 * angle + power->x2 * log_modulus;
result->x1 = result_modulus * cosf(result_angle);
result->x2 = result_modulus * sinf(result_angle);
}
void bgc_vector2_get_complex_power_fp64(const BgcVector2FP64* base, const BgcVector2FP64* power, BgcVector2FP64* result)
{
const double base_square_modulus = bgc_vector2_get_square_modulus_fp64(base);
if (base_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
result->x1 = 0.0;
result->x2 = 0.0;
return;
}
const double log_modulus = log(base_square_modulus) * 0.5;
const double angle = atan2(base->x2, base->x1);
const double result_modulus = exp(power->x1 * log_modulus - power->x2 * angle);
const double result_angle = power->x1 * angle + power->x2 * log_modulus;
result->x1 = result_modulus * cos(result_angle);
result->x2 = result_modulus * sin(result_angle);
}
// =================== Angle ==================== //
float bgc_vector2_get_angle_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcAngleUnitEnum unit)
{
const float square_modulus1 = bgc_vector2_get_square_modulus_fp32(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32) {
// square_modulus1 != square_modulus1 is check for NaN value at square_modulus1
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32 || square_modulus1 != square_modulus1) {
return 0.0f;
}
const float square_modulus2 = bgc_vector2_get_square_modulus_fp32(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32) {
// square_modulus2 != square_modulus2 is check for NaN value at square_modulus2
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32 || square_modulus2 != square_modulus2) {
return 0.0f;
}
const float cosine = bgc_vector2_get_scalar_product_fp32(vector1, vector2) / sqrtf(square_modulus1 * square_modulus2);
const float scalar = bgc_vector2_get_scalar_product_fp32(vector1, vector2);
if (cosine >= 1.0f - BGC_EPSYLON_FP32) {
return 0.0f;
}
const float cross = bgc_vector2_get_cross_product_fp32(vector1, vector2);
if (cosine <= -1.0f + BGC_EPSYLON_FP32) {
return bgc_angle_get_half_circle_fp32(unit);
}
return bgc_radians_to_units_fp32(acosf(cosine), unit);
return bgc_radians_to_units_fp32(atan2f(cross >= 0 ? cross : -cross, scalar), unit);
}
double bgc_vector2_get_angle_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const BgcAngleUnitEnum unit)
{
const double square_modulus1 = bgc_vector2_get_square_modulus_fp64(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64) {
// square_modulus1 != square_modulus1 is check for NaN value at square_modulus1
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64 || square_modulus1 != square_modulus1) {
return 0.0;
}
const double square_modulus2 = bgc_vector2_get_square_modulus_fp64(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64) {
// square_modulus2 != square_modulus2 is check for NaN value at square_modulus2
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64 || square_modulus2 != square_modulus2) {
return 0.0;
}
const double cosine = bgc_vector2_get_scalar_product_fp64(vector1, vector2) / sqrt(square_modulus1 * square_modulus2);
const double scalar = bgc_vector2_get_scalar_product_fp64(vector1, vector2);
if (cosine >= 1.0 - BGC_EPSYLON_FP64) {
return 0.0;
}
const double cross = bgc_vector2_get_cross_product_fp64(vector1, vector2);
if (cosine <= -1.0 + BGC_EPSYLON_FP64) {
return bgc_angle_get_half_circle_fp64(unit);
}
return bgc_radians_to_units_fp64(acos(cosine), unit);
return bgc_radians_to_units_fp64(atan2(cross >= 0 ? cross : -cross, scalar), unit);
}

View file

@ -44,6 +44,62 @@ inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVec
destination->x2 = x2;
}
// ================= Directions ================= //
inline int bgc_vector2_get_direction_fp32(const int direction, BgcVector2FP32* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0f;
vector->x2 = 0.0f;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = 1.0f;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0f;
vector->x2 = 0.0f;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = -1.0f;
return 1;
}
return 0;
}
inline int bgc_vector2_get_direction_fp64(const int direction, BgcVector2FP64* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0;
vector->x2 = 0.0;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = 1.0;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0;
vector->x2 = 0.0;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = -1.0;
return 1;
}
return 0;
}
// ================== Modulus =================== //
inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector)
@ -202,54 +258,6 @@ inline int bgc_vector2_normalize_fp64(const BgcVector2FP64* vector, BgcVector2FP
return 1;
}
// ============= Complex Conjugate ============== //
inline void bgc_vector2_complex_conjugate_fp32(const BgcVector2FP32* vector, BgcVector2FP32* conjugate)
{
conjugate->x1 = vector->x1;
conjugate->x2 = -vector->x2;
}
inline void bgc_vector2_complex_conjugate_fp64(const BgcVector2FP64* vector, BgcVector2FP64* conjugate)
{
conjugate->x1 = vector->x1;
conjugate->x2 = -vector->x2;
}
// =============== Complex Invert =============== //
inline int bgc_vector2_complex_invert_fp32(const BgcVector2FP32* vector, BgcVector2FP32* inverted)
{
const float square_modulus = bgc_vector2_get_square_modulus_fp32(vector);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = 1.0f / square_modulus;
inverted->x1 = vector->x1 * multiplicand;
inverted->x2 = -vector->x2 * multiplicand;
return 1;
}
inline int bgc_vector2_complex_invert_fp64(const BgcVector2FP64* vector, BgcVector2FP64* inverted)
{
const double square_modulus = bgc_vector2_get_square_modulus_fp64(vector);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = 1.0 / square_modulus;
inverted->x1 = vector->x1 * multiplicand;
inverted->x2 = -vector->x2 * multiplicand;
return 1;
}
// ==================== Add ===================== //
inline void bgc_vector2_add_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* sum)
@ -362,7 +370,7 @@ inline void bgc_vector2_get_mean_of_three_fp64(const BgcVector2FP64* vector1, co
// =================== Linear =================== //
inline void bgc_vector2_get_linear_interpolation_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation)
inline void bgc_vector2_interpolate_linearly_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const float phase, BgcVector2FP32* interpolation)
{
const float counterphase = 1.0f - phase;
@ -370,7 +378,7 @@ inline void bgc_vector2_get_linear_interpolation_fp32(const BgcVector2FP32* vect
interpolation->x2 = vector1->x2 * counterphase + vector2->x2 * phase;
}
inline void bgc_vector2_get_linear_interpolation_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation)
inline void bgc_vector2_interpolate_linearly_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, const double phase, BgcVector2FP64* interpolation)
{
const double counterphase = 1.0 - phase;
@ -450,72 +458,6 @@ inline double bgc_vector2_get_cross_product_fp64(const BgcVector2FP64* vector1,
return vector1->x1 * vector2->x2 - vector1->x2 * vector2->x1;
}
// ============ Get Complex Product ============= //
inline void bgc_vector2_get_complex_product_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, BgcVector2FP32* result)
{
const float x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2;
const float x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1;
result->x1 = x1;
result->x2 = x2;
}
inline void bgc_vector2_get_complex_product_fp64(const BgcVector2FP64* vector1, const BgcVector2FP64* vector2, BgcVector2FP64* result)
{
const double x1 = vector1->x1 * vector2->x1 - vector1->x2 * vector2->x2;
const double x2 = vector1->x1 * vector2->x2 + vector1->x2 * vector2->x1;
result->x1 = x1;
result->x2 = x2;
}
// ============= Get Complex Ratio ============== //
inline int bgc_vector2_get_complex_ratio_fp32(const BgcVector2FP32* divident, const BgcVector2FP32* divisor, BgcVector2FP32* quotient)
{
const float square_modulus = bgc_vector2_get_square_modulus_fp32(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return 0;
}
const float x1 = divident->x1 * divisor->x1 + divident->x2 * divisor->x2;
const float x2 = divident->x2 * divisor->x1 - divident->x1 * divisor->x2;
const float multiplier = 1.0f / square_modulus;
quotient->x1 = x1 * multiplier;
quotient->x2 = x2 * multiplier;
return 1;
}
inline int bgc_vector2_get_complex_ratio_fp64(const BgcVector2FP64* divident, const BgcVector2FP64* divisor, BgcVector2FP64* quotient)
{
const double square_modulus = bgc_vector2_get_square_modulus_fp64(divisor);
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return 0;
}
const double x1 = divident->x1 * divisor->x1 + divident->x2 * divisor->x2;
const double x2 = divident->x2 * divisor->x1 - divident->x1 * divisor->x2;
const double multiplier = 1.0 / square_modulus;
quotient->x1 = x1 * multiplier;
quotient->x2 = x2 * multiplier;
return 1;
}
// ============= Get Complex Power ============== //
void bgc_vector2_get_complex_power_fp32(const BgcVector2FP32* base, const BgcVector2FP32* power, BgcVector2FP32* result);
void bgc_vector2_get_complex_power_fp64(const BgcVector2FP64* base, const BgcVector2FP64* power, BgcVector2FP64* result);
// ================= Get Angle ================== //
float bgc_vector2_get_angle_fp32(const BgcVector2FP32* vector1, const BgcVector2FP32* vector2, const BgcAngleUnitEnum unit);

View file

@ -6,6 +6,9 @@ extern inline void bgc_vector3_reset_fp64(BgcVector3FP64* vector);
extern inline void bgc_vector3_set_values_fp32(const float x1, const float x2, const float x3, BgcVector3FP32* destination);
extern inline void bgc_vector3_set_values_fp64(const double x1, const double x2, const double x3, BgcVector3FP64* destination);
inline int bgc_vector3_get_direction_fp32(const int direction, BgcVector3FP32* vector);
inline int bgc_vector3_get_direction_fp64(const int direction, BgcVector3FP64* vector);
extern inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector);
extern inline double bgc_vector3_get_square_modulus_fp64(const BgcVector3FP64* vector);
@ -30,8 +33,11 @@ extern inline void bgc_vector3_swap_fp64(BgcVector3FP64* vector1, BgcVector3FP64
extern inline void bgc_vector3_reverse_fp32(const BgcVector3FP32* vector, BgcVector3FP32* reverse);
extern inline void bgc_vector3_reverse_fp64(const BgcVector3FP64* vector, BgcVector3FP64* reverse);
extern inline int bgc_vector3_normalize_fp32(const BgcVector3FP32* vector, BgcVector3FP32* normalized);
extern inline int bgc_vector3_normalize_fp64(const BgcVector3FP64* vector, BgcVector3FP64* normalized);
extern inline int bgc_vector3_normalize_fp32(BgcVector3FP32* vector);
extern inline int bgc_vector3_normalize_fp64(BgcVector3FP64* vector);
extern inline int bgc_vector3_get_normalized_fp32(const BgcVector3FP32* vector, BgcVector3FP32* normalized);
extern inline int bgc_vector3_get_normalized_fp64(const BgcVector3FP64* vector, BgcVector3FP64* normalized);
extern inline void bgc_vector3_add_fp32(const BgcVector3FP32* vector1, const BgcVector3FP32* vector2, BgcVector3FP32* sum);
extern inline void bgc_vector3_add_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, BgcVector3FP64* sum);
@ -57,8 +63,8 @@ extern inline void bgc_vector3_get_mean_of_two_fp64(const BgcVector3FP64* vector
extern inline void bgc_vector3_get_mean_of_three_fp32(const BgcVector3FP32* vector1, const BgcVector3FP32* vector2, const BgcVector3FP32* vector3, BgcVector3FP32* result);
extern inline void bgc_vector3_get_mean_of_three_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, const BgcVector3FP64* vector3, BgcVector3FP64* result);
extern inline void bgc_vector3_get_linear_interpolation_fp32(const BgcVector3FP32* vector1, const BgcVector3FP32* vector2, const float phase, BgcVector3FP32* interpolation);
extern inline void bgc_vector3_get_linear_interpolation_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, const double phase, BgcVector3FP64* interpolation);
extern inline void bgc_vector3_interpolate_linearly_fp32(const BgcVector3FP32* vector1, const BgcVector3FP32* vector2, const float phase, BgcVector3FP32* interpolation);
extern inline void bgc_vector3_interpolate_linearly_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, const double phase, BgcVector3FP64* interpolation);
extern inline void bgc_vector3_minimize_fp32(const BgcVector3FP32* vector, BgcVector3FP32* minimal);
extern inline void bgc_vector3_minimize_fp64(const BgcVector3FP64* vector, BgcVector3FP64* minimal);
@ -96,52 +102,52 @@ float bgc_vector3_get_angle_fp32(const BgcVector3FP32* vector1, const BgcVector3
{
const float square_modulus1 = bgc_vector3_get_square_modulus_fp32(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32) {
// square_modulus1 != square_modulus1 is check for NaN value at square_modulus1
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP32 || square_modulus1 != square_modulus1) {
return 0.0f;
}
const float square_modulus2 = bgc_vector3_get_square_modulus_fp32(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32) {
// square_modulus2 != square_modulus2 is check for NaN value at square_modulus2
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP32 || square_modulus2 != square_modulus2) {
return 0.0f;
}
const float cosine = bgc_vector3_get_scalar_product_fp32(vector1, vector2) / sqrtf(square_modulus1 * square_modulus2);
BgcVector3FP32 cross_product;
if (cosine >= 1.0f - BGC_EPSYLON_FP32) {
return 0.0f;
}
bgc_vector3_get_cross_product_fp32(vector1, vector2, &cross_product);
if (cosine <= -1.0f + BGC_EPSYLON_FP32) {
return bgc_angle_get_half_circle_fp32(unit);
}
const float scalar = bgc_vector3_get_scalar_product_fp32(vector1, vector2);
return bgc_radians_to_units_fp32(acosf(cosine), unit);
const float cross = bgc_vector3_get_modulus_fp32(&cross_product);
return bgc_radians_to_units_fp32(atan2f(cross, scalar), unit);
}
double bgc_vector3_get_angle_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, const BgcAngleUnitEnum unit)
{
const double square_modulus1 = bgc_vector3_get_square_modulus_fp64(vector1);
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64) {
// square_modulus1 != square_modulus1 is check for NaN value at square_modulus1
if (square_modulus1 <= BGC_SQUARE_EPSYLON_FP64 || square_modulus1 != square_modulus1) {
return 0.0;
}
const double square_modulus2 = bgc_vector3_get_square_modulus_fp64(vector2);
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64) {
// square_modulus2 != square_modulus2 is check for NaN value at square_modulus2
if (square_modulus2 <= BGC_SQUARE_EPSYLON_FP64 || square_modulus2 != square_modulus2) {
return 0.0;
}
const double cosine = bgc_vector3_get_scalar_product_fp64(vector1, vector2) / sqrt(square_modulus1 * square_modulus2);
BgcVector3FP64 cross_product;
if (cosine >= 1.0 - BGC_EPSYLON_FP64) {
return 0.0;
}
bgc_vector3_get_cross_product_fp64(vector1, vector2, &cross_product);
if (cosine <= -1.0 + BGC_EPSYLON_FP64) {
return bgc_angle_get_half_circle_fp64(unit);
}
const double scalar = bgc_vector3_get_scalar_product_fp64(vector1, vector2);
return bgc_radians_to_units_fp64(acos(cosine), unit);
const double cross = bgc_vector3_get_modulus_fp64(&cross_product);
return bgc_radians_to_units_fp64(atan2(cross, scalar), unit);
}

View file

@ -50,6 +50,94 @@ inline void bgc_vector3_set_values_fp64(const double x1, const double x2, const
destination->x3 = x3;
}
// ================= Directions ================= //
inline int bgc_vector3_get_direction_fp32(const int direction, BgcVector3FP32* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0f;
vector->x2 = 0.0f;
vector->x3 = 0.0f;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = 1.0f;
vector->x3 = 0.0f;
return 1;
case BGC_DIRECTION_X3:
vector->x1 = 0.0f;
vector->x2 = 0.0f;
vector->x3 = 1.0f;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0f;
vector->x2 = 0.0f;
vector->x3 = 0.0f;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = -1.0f;
vector->x3 = 0.0f;
return 1;
case -BGC_DIRECTION_X3:
vector->x1 = 0.0f;
vector->x2 = 0.0f;
vector->x3 = -1.0f;
return 1;
}
return 0;
}
inline int bgc_vector3_get_direction_fp64(const int direction, BgcVector3FP64* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0;
vector->x2 = 0.0;
vector->x3 = 0.0;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = 1.0;
vector->x3 = 0.0;
return 1;
case BGC_DIRECTION_X3:
vector->x1 = 0.0;
vector->x2 = 0.0;
vector->x3 = 1.0;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0;
vector->x2 = 0.0;
vector->x3 = 0.0;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = -1.0;
vector->x3 = 0.0;
return 1;
case -BGC_DIRECTION_X3:
vector->x1 = 0.0;
vector->x2 = 0.0;
vector->x3 = -1.0;
return 1;
}
return 0;
}
// ================== Modulus =================== //
inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector)
@ -176,7 +264,49 @@ inline void bgc_vector3_reverse_fp64(const BgcVector3FP64* vector, BgcVector3FP6
// ================= Normalize ================== //
inline int bgc_vector3_normalize_fp32(const BgcVector3FP32* vector, BgcVector3FP32* normalized)
inline int bgc_vector3_normalize_fp32(BgcVector3FP32* vector)
{
const float square_modulus = bgc_vector3_get_square_modulus_fp32(vector);
if (bgc_is_sqare_unit_fp32(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
return 0;
}
const float multiplicand = sqrtf(1.0f / square_modulus);
vector->x1 *= multiplicand;
vector->x2 *= multiplicand;
vector->x3 *= multiplicand;
return 1;
}
inline int bgc_vector3_normalize_fp64(BgcVector3FP64* vector)
{
const double square_modulus = bgc_vector3_get_square_modulus_fp64(vector);
if (bgc_is_sqare_unit_fp64(square_modulus)) {
return 1;
}
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
return 0;
}
const double multiplicand = sqrt(1.0 / square_modulus);
vector->x1 *= multiplicand;
vector->x2 *= multiplicand;
vector->x3 *= multiplicand;
return 1;
}
inline int bgc_vector3_get_normalized_fp32(const BgcVector3FP32* vector, BgcVector3FP32* normalized)
{
const float square_modulus = bgc_vector3_get_square_modulus_fp32(vector);
@ -200,7 +330,7 @@ inline int bgc_vector3_normalize_fp32(const BgcVector3FP32* vector, BgcVector3FP
return 1;
}
inline int bgc_vector3_normalize_fp64(const BgcVector3FP64* vector, BgcVector3FP64* normalized)
inline int bgc_vector3_get_normalized_fp64(const BgcVector3FP64* vector, BgcVector3FP64* normalized)
{
const double square_modulus = bgc_vector3_get_square_modulus_fp64(vector);
@ -350,7 +480,7 @@ inline void bgc_vector3_get_mean_of_three_fp64(const BgcVector3FP64* vector1, co
// =================== Linear =================== //
inline void bgc_vector3_get_linear_interpolation_fp32(const BgcVector3FP32* vector1, const BgcVector3FP32* vector2, const float phase, BgcVector3FP32* interpolation)
inline void bgc_vector3_interpolate_linearly_fp32(const BgcVector3FP32* vector1, const BgcVector3FP32* vector2, const float phase, BgcVector3FP32* interpolation)
{
const float counterphase = 1.0f - phase;
@ -359,7 +489,7 @@ inline void bgc_vector3_get_linear_interpolation_fp32(const BgcVector3FP32* vect
interpolation->x3 = vector1->x3 * counterphase + vector2->x3 * phase;
}
inline void bgc_vector3_get_linear_interpolation_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, const double phase, BgcVector3FP64* interpolation)
inline void bgc_vector3_interpolate_linearly_fp64(const BgcVector3FP64* vector1, const BgcVector3FP64* vector2, const double phase, BgcVector3FP64* interpolation)
{
const double counterphase = 1.0 - phase;

View file

@ -40,6 +40,9 @@ extern inline void bgc_versor_combine_fp64(const BgcVersorFP64* second, const Bg
extern inline void bgc_versor_combine3_fp32(const BgcVersorFP32* third, const BgcVersorFP32* second, const BgcVersorFP32* first, BgcVersorFP32* result);
extern inline void bgc_versor_combine3_fp64(const BgcVersorFP64* third, const BgcVersorFP64* second, const BgcVersorFP64* first, BgcVersorFP64* result);
extern inline void bgc_versor_exclude_fp32(const BgcVersorFP32* base, const BgcVersorFP32* excludant, BgcVersorFP32* difference);
extern inline void bgc_versor_exclude_fp64(const BgcVersorFP64* base, const BgcVersorFP64* excludant, BgcVersorFP64* difference);
extern inline void bgc_versor_get_rotation_matrix_fp32(const BgcVersorFP32* versor, BgcMatrix3x3FP32* matrix);
extern inline void bgc_versor_get_rotation_matrix_fp64(const BgcVersorFP64* versor, BgcMatrix3x3FP64* matrix);
@ -78,7 +81,6 @@ void _bgc_versor_normalize_fp32(const float square_modulus, _BgcDarkTwinVersorFP
twin->x1 *= multiplier;
twin->x2 *= multiplier;
twin->x3 *= multiplier;
}
void _bgc_versor_normalize_fp64(const double square_modulus, _BgcDarkTwinVersorFP64* twin)
@ -149,26 +151,400 @@ void bgc_versor_set_turn_fp64(const double x1, const double x2, const double x3,
bgc_versor_set_values_fp64(cos(half_angle), x1 * multiplier, x2 * multiplier, x3 * multiplier, result);
}
// ========= Make Direction Difference ========== //
inline int _bgc_versor_make_direction_turn_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, const float square_modulus_product, BgcVersorFP32* result)
{
BgcVector3FP32 orthogonal_axis;
bgc_vector3_get_cross_product_fp32(start, end, &orthogonal_axis);
const float scalar_product = bgc_vector3_get_scalar_product_fp32(start, end);
const float square_modulus = bgc_vector3_get_square_modulus_fp32(&orthogonal_axis);
const float square_sine = square_modulus / square_modulus_product;
if (square_sine > BGC_SQUARE_EPSYLON_FP32) {
const float cosine = scalar_product / sqrtf(square_modulus_product);
const float angle = 0.5f * atan2f(sqrtf(square_sine), cosine);
const float multiplier = sinf(angle) * sqrtf(1.0f / square_modulus);
bgc_versor_set_values_fp32(cosf(angle), orthogonal_axis.x1 * multiplier, orthogonal_axis.x2 * multiplier, orthogonal_axis.x3 * multiplier, result);
return BGC_SOME_TURN;
}
if (scalar_product < 0.0f) {
return BGC_OPPOSITE;
}
bgc_versor_reset_fp32(result);
return BGC_ZERO_TURN;
}
inline int _bgc_versor_make_direction_turn_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, const double square_modulus_product, BgcVersorFP64* result)
{
BgcVector3FP64 orthogonal_axis;
bgc_vector3_get_cross_product_fp64(start, end, &orthogonal_axis);
const double scalar_product = bgc_vector3_get_scalar_product_fp64(start, end);
const double square_modulus = bgc_vector3_get_square_modulus_fp64(&orthogonal_axis);
const double square_sine = square_modulus / square_modulus_product;
if (square_sine > BGC_SQUARE_EPSYLON_FP64) {
const double cosine = scalar_product / sqrt(square_modulus_product);
const double angle = 0.5 * atan2(sqrt(square_sine), cosine);
const double multiplier = sin(angle) * sqrt(1.0f / square_modulus);
bgc_versor_set_values_fp64(cos(angle), orthogonal_axis.x1 * multiplier, orthogonal_axis.x2 * multiplier, orthogonal_axis.x3 * multiplier, result);
return BGC_SOME_TURN;
}
if (scalar_product < 0.0) {
return BGC_OPPOSITE;
}
bgc_versor_reset_fp64(result);
return BGC_ZERO_TURN;
}
int bgc_versor_make_direction_difference_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, BgcVersorFP32* result)
{
const float start_square_modulus = bgc_vector3_get_square_modulus_fp32(start);
const float end_square_modulus = bgc_vector3_get_square_modulus_fp32(end);
if (start_square_modulus <= BGC_SQUARE_EPSYLON_FP32 || end_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
bgc_versor_reset_fp32(result);
return BGC_ZERO_TURN;
}
return _bgc_versor_make_direction_turn_fp32(start, end, start_square_modulus * end_square_modulus, result);
}
int bgc_versor_make_direction_difference_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, BgcVersorFP64* result)
{
const double start_square_modulus = bgc_vector3_get_square_modulus_fp64(start);
const double end_square_modulus = bgc_vector3_get_square_modulus_fp64(end);
if (start_square_modulus <= BGC_SQUARE_EPSYLON_FP64 || end_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
bgc_versor_reset_fp64(result);
return BGC_ZERO_TURN;
}
return _bgc_versor_make_direction_turn_fp64(start, end, start_square_modulus * end_square_modulus, result);
}
// =============== Set Directions =============== //
inline int _bgc_versor_validate_basis_fp32(const float primary_square_modulus, const float auxiliary_square_modulus, const float orthogonal_square_modulus)
{
if (primary_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
//TODO: add error code for: primary_vector is zero
return BGC_FAILED;
}
if (auxiliary_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
//TODO: add error code for: auxiliary_vector is zero
return BGC_FAILED;
}
if (orthogonal_square_modulus / (primary_square_modulus * auxiliary_square_modulus) <= BGC_SQUARE_EPSYLON_FP32) {
//TODO: add error code for: primary_vector and auxiliary_vector are parallel
return BGC_FAILED;
}
return BGC_SUCCESS;
}
inline int _bgc_versor_validate_basis_fp64(const double primary_square_modulus, const double auxiliary_square_modulus, const double orthogonal_square_modulus)
{
if (primary_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
//TODO: add error code for: primary_vector is zero
return BGC_FAILED;
}
if (auxiliary_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
//TODO: add error code for: auxiliary_vector is zero
return BGC_FAILED;
}
if (orthogonal_square_modulus / (primary_square_modulus * auxiliary_square_modulus) <= BGC_SQUARE_EPSYLON_FP64) {
//TODO: add error code for: primary_vector and auxiliary_vector are parallel
return BGC_FAILED;
}
return BGC_SUCCESS;
}
int bgc_versor_make_basis_difference_fp32(
const BgcVector3FP32* initial_primary_direction,
const BgcVector3FP32* initial_auxiliary_direction,
const BgcVector3FP32* final_primary_direction,
const BgcVector3FP32* final_auxiliary_direction,
BgcVersorFP32* result
)
{
BgcVector3FP32 initial_orthogonal_direction, turned_orthogonal_direction, final_orthogonal_direction;
// Step 1: Validate initial basis:
bgc_vector3_get_cross_product_fp32(initial_primary_direction, initial_auxiliary_direction, &initial_orthogonal_direction);
const float initial_primary_square_modulus = bgc_vector3_get_square_modulus_fp32(initial_primary_direction);
const float initial_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp32(initial_auxiliary_direction);
const float initial_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp32(&initial_orthogonal_direction);
const int initial_basis_valudation = _bgc_versor_validate_basis_fp32(initial_primary_square_modulus, initial_auxiliary_square_modulus, initial_orthogonal_square_modulus);
if (initial_basis_valudation != BGC_SUCCESS) {
return initial_basis_valudation;
}
// Step 1: Validate final basis:
bgc_vector3_get_cross_product_fp32(final_primary_direction, final_auxiliary_direction, &final_orthogonal_direction);
const float final_primary_square_modulus = bgc_vector3_get_square_modulus_fp32(final_primary_direction);
const float final_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp32(final_auxiliary_direction);
const float final_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp32(&final_orthogonal_direction);
const int final_basis_valudation = _bgc_versor_validate_basis_fp32(final_primary_square_modulus, final_auxiliary_square_modulus, final_orthogonal_square_modulus);
if (final_basis_valudation != BGC_SUCCESS) {
return final_basis_valudation;
}
// Step 3: Validate normalize orthogonal vectors:
bgc_vector3_divide_fp32(&initial_orthogonal_direction, sqrtf(initial_orthogonal_square_modulus), &initial_orthogonal_direction);
bgc_vector3_divide_fp32(&final_orthogonal_direction, sqrtf(final_orthogonal_square_modulus), &final_orthogonal_direction);
BgcVersorFP32 turn1, turn2;
// Step 4: Find turn1
int turn1_code = _bgc_versor_make_direction_turn_fp32(initial_primary_direction, final_primary_direction, initial_primary_square_modulus * final_primary_square_modulus, &turn1);
if (turn1_code == BGC_OPPOSITE) {
bgc_versor_set_values_fp32(0.0f, initial_orthogonal_direction.x1, initial_orthogonal_direction.x2, initial_orthogonal_direction.x3, &turn1);
}
bgc_versor_turn_vector_fp32(&turn1, &initial_orthogonal_direction, &turned_orthogonal_direction);
// Step 5: Find turn2:
int turn2_code = _bgc_versor_make_direction_turn_fp32(&turned_orthogonal_direction, &final_orthogonal_direction, 1.0f, &turn2);
if (turn2_code == BGC_OPPOSITE) {
const float turn2_multiplier = sqrtf(1.0f / final_primary_square_modulus);
bgc_versor_set_values_fp32(0.0f,
final_primary_direction->x1 * turn2_multiplier,
final_primary_direction->x2 * turn2_multiplier,
final_primary_direction->x3 * turn2_multiplier,
&turn2
);
}
// Step 6: Combine turn1 and turn2:
bgc_versor_combine_fp32(&turn2, &turn1, result);
return BGC_SUCCESS;
}
int bgc_versor_make_basis_difference_fp64(
const BgcVector3FP64* initial_primary_direction,
const BgcVector3FP64* initial_auxiliary_direction,
const BgcVector3FP64* final_primary_direction,
const BgcVector3FP64* final_auxiliary_direction,
BgcVersorFP64* result
)
{
BgcVector3FP64 initial_orthogonal_direction, turned_orthogonal_direction, final_orthogonal_direction;
// Step 1: Validate initial basis:
bgc_vector3_get_cross_product_fp64(initial_primary_direction, initial_auxiliary_direction, &initial_orthogonal_direction);
const double initial_primary_square_modulus = bgc_vector3_get_square_modulus_fp64(initial_primary_direction);
const double initial_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp64(initial_auxiliary_direction);
const double initial_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp64(&initial_orthogonal_direction);
const int initial_basis_valudation = _bgc_versor_validate_basis_fp64(initial_primary_square_modulus, initial_auxiliary_square_modulus, initial_orthogonal_square_modulus);
if (initial_basis_valudation != BGC_SUCCESS) {
return initial_basis_valudation;
}
// Step 1: Validate final basis:
bgc_vector3_get_cross_product_fp64(final_primary_direction, final_auxiliary_direction, &final_orthogonal_direction);
const double final_primary_square_modulus = bgc_vector3_get_square_modulus_fp64(final_primary_direction);
const double final_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp64(final_auxiliary_direction);
const double final_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp64(&final_orthogonal_direction);
const int final_basis_valudation = _bgc_versor_validate_basis_fp64(final_primary_square_modulus, final_auxiliary_square_modulus, final_orthogonal_square_modulus);
if (final_basis_valudation != BGC_SUCCESS) {
return final_basis_valudation;
}
// Step 3: Validate normalize orthogonal vectors:
bgc_vector3_divide_fp64(&initial_orthogonal_direction, sqrt(initial_orthogonal_square_modulus), &initial_orthogonal_direction);
bgc_vector3_divide_fp64(&final_orthogonal_direction, sqrt(final_orthogonal_square_modulus), &final_orthogonal_direction);
BgcVersorFP64 turn1, turn2;
// Step 4: Find turn1
int turn1_code = _bgc_versor_make_direction_turn_fp64(initial_primary_direction, final_primary_direction, initial_primary_square_modulus * final_primary_square_modulus, &turn1);
if (turn1_code == BGC_OPPOSITE) {
bgc_versor_set_values_fp64(0.0, initial_orthogonal_direction.x1, initial_orthogonal_direction.x2, initial_orthogonal_direction.x3, &turn1);
}
bgc_versor_turn_vector_fp64(&turn1, &initial_orthogonal_direction, &turned_orthogonal_direction);
// Step 5: Find turn2:
int turn2_code = _bgc_versor_make_direction_turn_fp64(&turned_orthogonal_direction, &final_orthogonal_direction, 1.0f, &turn2);
if (turn2_code == BGC_OPPOSITE) {
const double turn2_multiplier = sqrt(1.0 / final_primary_square_modulus);
bgc_versor_set_values_fp64(0.0,
final_primary_direction->x1 * turn2_multiplier,
final_primary_direction->x2 * turn2_multiplier,
final_primary_direction->x3 * turn2_multiplier,
&turn2
);
}
// Step 6: Combine turn1 and turn2:
bgc_versor_combine_fp64(&turn2, &turn1, result);
return BGC_SUCCESS;
}
// =============== Get Exponation =============== //
void bgc_versor_get_exponation_fp32(const BgcVersorFP32* base, const float exponent, BgcVersorFP32* power)
{
const float square_vector = base->x1 * base->x1 + base->x2 * base->x2 + base->x3 * base->x3;
if (square_vector <= BGC_SQUARE_EPSYLON_FP32 || square_vector != square_vector) {
bgc_versor_reset_fp32(power);
return;
}
const float vector_modulus = sqrtf(square_vector);
const float angle = atan2f(vector_modulus, base->s0) * exponent;
const float multiplier = sinf(angle) / vector_modulus;
bgc_versor_set_values_fp32(cosf(angle), base->x1 * multiplier, base->x2 * multiplier, base->x3 * multiplier, power);
}
void bgc_versor_get_exponation_fp64(const BgcVersorFP64* base, const double exponent, BgcVersorFP64* power)
{
const double square_vector = base->x1 * base->x1 + base->x2 * base->x2 + base->x3 * base->x3;
if (square_vector <= BGC_SQUARE_EPSYLON_FP64 || square_vector != square_vector) {
bgc_versor_reset_fp64(power);
return;
}
const double vector_modulus = sqrt(square_vector);
const double angle = atan2(vector_modulus, base->s0) * exponent;
const double multiplier = sin(angle) / vector_modulus;
bgc_versor_set_values_fp64(cos(angle), base->x1 * multiplier, base->x2 * multiplier, base->x3 * multiplier, power);
}
// ============ Sphere Interpolation ============ //
void bgc_versor_spherically_interpolate_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, const float phase, BgcVersorFP32* result)
{
const float delta_s0 = (end->s0 * start->s0 + end->x1 * start->x1) + (end->x2 * start->x2 + end->x3 * start->x3);
const float delta_x1 = (end->x1 * start->s0 + end->x3 * start->x2) - (end->s0 * start->x1 + end->x2 * start->x3);
const float delta_x2 = (end->x2 * start->s0 + end->x1 * start->x3) - (end->s0 * start->x2 + end->x3 * start->x1);
const float delta_x3 = (end->x3 * start->s0 + end->x2 * start->x1) - (end->s0 * start->x3 + end->x1 * start->x2);
const float square_vector = delta_x1 * delta_x1 + delta_x2 * delta_x2 + delta_x3 * delta_x3;
// square_vector != square_vector means checking for NaN value at square_vector
if (square_vector <= BGC_SQUARE_EPSYLON_FP32 || square_vector != square_vector) {
bgc_versor_copy_fp32(end, result);
return;
}
// Calculating of the turning which fits the phase:
const float vector_modulus = sqrtf(square_vector);
const float angle = atan2f(vector_modulus, delta_s0) * phase;
const float multiplier = sinf(angle) / vector_modulus;
const float turn_s0 = cosf(angle);
const float turn_x1 = delta_x1 * multiplier;
const float turn_x2 = delta_x2 * multiplier;
const float turn_x3 = delta_x3 * multiplier;
// Combining of starting orientation with the turning
bgc_versor_set_values_fp32(
(turn_s0 * start->s0 - turn_x1 * start->x1) - (turn_x2 * start->x2 + turn_x3 * start->x3),
(turn_x1 * start->s0 + turn_s0 * start->x1) - (turn_x3 * start->x2 - turn_x2 * start->x3),
(turn_x2 * start->s0 + turn_s0 * start->x2) - (turn_x1 * start->x3 - turn_x3 * start->x1),
(turn_x3 * start->s0 + turn_s0 * start->x3) - (turn_x2 * start->x1 - turn_x1 * start->x2),
result
);
}
void bgc_versor_spherically_interpolate_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, const double phase, BgcVersorFP64* result)
{
const double delta_s0 = (end->s0 * start->s0 + end->x1 * start->x1) + (end->x2 * start->x2 + end->x3 * start->x3);
const double delta_x1 = (end->x1 * start->s0 + end->x3 * start->x2) - (end->s0 * start->x1 + end->x2 * start->x3);
const double delta_x2 = (end->x2 * start->s0 + end->x1 * start->x3) - (end->s0 * start->x2 + end->x3 * start->x1);
const double delta_x3 = (end->x3 * start->s0 + end->x2 * start->x1) - (end->s0 * start->x3 + end->x1 * start->x2);
const double square_vector = delta_x1 * delta_x1 + delta_x2 * delta_x2 + delta_x3 * delta_x3;
// square_vector != square_vector means checking for NaN value at square_vector
if (square_vector <= BGC_SQUARE_EPSYLON_FP64 || square_vector != square_vector) {
bgc_versor_copy_fp64(end, result);
return;
}
// Calculating of the turning which fits the phase:
const double vector_modulus = sqrt(square_vector);
const double angle = atan2(vector_modulus, delta_s0) * phase;
const double multiplier = sin(angle) / vector_modulus;
const double turn_s0 = cos(angle);
const double turn_x1 = delta_x1 * multiplier;
const double turn_x2 = delta_x2 * multiplier;
const double turn_x3 = delta_x3 * multiplier;
// Combining of starting orientation with the turning
bgc_versor_set_values_fp64(
(turn_s0 * start->s0 - turn_x1 * start->x1) - (turn_x2 * start->x2 + turn_x3 * start->x3),
(turn_x1 * start->s0 + turn_s0 * start->x1) - (turn_x3 * start->x2 - turn_x2 * start->x3),
(turn_x2 * start->s0 + turn_s0 * start->x2) - (turn_x1 * start->x3 - turn_x3 * start->x1),
(turn_x3 * start->s0 + turn_s0 * start->x3) - (turn_x2 * start->x1 - turn_x1 * start->x2),
result
);
}
// ================ Get Rotation ================ //
void bgc_versor_get_rotation_fp32(const BgcVersorFP32* versor, BgcRotation3FP32* result)
{
if (versor->s0 <= -(1.0f - BGC_EPSYLON_FP32) || 1.0f - BGC_EPSYLON_FP32 <= versor->s0) {
const float square_modulus = versor->x1 * versor->x1 + versor->x2 * versor->x2 + versor->x3 * versor->x3;
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
bgc_rotation3_reset_fp32(result);
return;
}
const float s0s0 = versor->s0 * versor->s0;
const float x1x1 = versor->x1 * versor->x1;
const float x2x2 = versor->x2 * versor->x2;
const float x3x3 = versor->x3 * versor->x3;
const float vector_modulus = sqrtf(square_modulus);
const float square_module = (s0s0 + x1x1) + (x2x2 + x3x3);
const float square_vector = x1x1 + (x2x2 + x3x3);
const float multiplier = 1.0f / vector_modulus;
result->radians = 2.0f * acosf(versor->s0 / sqrtf(square_module));
const float multiplier = sqrtf(1.0f / square_vector);
result->radians = 2.0f * atan2f(vector_modulus, versor->s0);
result->axis.x1 = versor->x1 * multiplier;
result->axis.x2 = versor->x2 * multiplier;
@ -177,22 +553,18 @@ void bgc_versor_get_rotation_fp32(const BgcVersorFP32* versor, BgcRotation3FP32*
void bgc_versor_get_rotation_fp64(const BgcVersorFP64* versor, BgcRotation3FP64* result)
{
if (versor->s0 <= -(1.0 - BGC_EPSYLON_FP64) || 1.0 - BGC_EPSYLON_FP64 <= versor->s0) {
const double square_modulus = versor->x1 * versor->x1 + versor->x2 * versor->x2 + versor->x3 * versor->x3;
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
bgc_rotation3_reset_fp64(result);
return;
}
const double s0s0 = versor->s0 * versor->s0;
const double x1x1 = versor->x1 * versor->x1;
const double x2x2 = versor->x2 * versor->x2;
const double x3x3 = versor->x3 * versor->x3;
const double vector_modulus = sqrt(square_modulus);
const double square_module = (s0s0 + x1x1) + (x2x2 + x3x3);
const double square_vector = x1x1 + (x2x2 + x3x3);
const double multiplier = 1.0 / vector_modulus;
result->radians = 2.0 * acos(versor->s0 / sqrt(square_module));
const double multiplier = sqrt(1.0 / square_vector);
result->radians = 2.0 * atan2(vector_modulus, versor->s0);
result->axis.x1 = versor->x1 * multiplier;
result->axis.x2 = versor->x2 * multiplier;

View file

@ -8,6 +8,20 @@
#include "vector3.h"
#include "rotation3.h"
#include "matrix3x3.h"
#include "quaternion.h"
#define BGC_SOME_TURN 1
#define BGC_ZERO_TURN 0
#define BGC_OPPOSITE -1
#define BGC_ERROR_PRIMARY_DIRECTION_UNKNOWN -3001
#define BGC_ERROR_PRIMARY_VECTOR_IS_ZERO -3002
#define BGC_ERROR_AUXILIARY_DIRECTION_UNKNOWN -3011
#define BGC_ERROR_AUXILIARY_VECTOR_IS_ZERO -3012
#define BGC_ERROR_DIRECTIONS_PARALLEL -3021
#define BGC_ERROR_VECTORS_PARALLEL -3022
// =================== Types ==================== //
@ -112,6 +126,30 @@ inline void bgc_versor_set_rotation_fp64(const BgcRotation3FP64* rotation, BgcVe
bgc_versor_set_turn_fp64(rotation->axis.x1, rotation->axis.x2, rotation->axis.x3, rotation->radians, BGC_ANGLE_UNIT_RADIANS, result);
}
// ========= Make Direction Difference ========== //
int bgc_versor_make_direction_difference_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, BgcVersorFP32* result);
int bgc_versor_make_direction_difference_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, BgcVersorFP64* result);
// =============== Set Directions =============== //
int bgc_versor_make_basis_difference_fp32(
const BgcVector3FP32* initial_primary_direction,
const BgcVector3FP32* initial_auxiliary_direction,
const BgcVector3FP32* final_primary_direction,
const BgcVector3FP32* final_auxiliary_direction,
BgcVersorFP32* result
);
int bgc_versor_make_basis_difference_fp64(
const BgcVector3FP64* initial_primary_direction,
const BgcVector3FP64* initial_auxiliary_direction,
const BgcVector3FP64* final_primary_direction,
const BgcVector3FP64* final_auxiliary_direction,
BgcVersorFP64* result
);
// ==================== Copy ==================== //
inline void bgc_versor_copy_fp32(const BgcVersorFP32* source, BgcVersorFP32* destination)
@ -184,12 +222,12 @@ inline void bgc_versor_swap_fp64(BgcVersorFP64* versor1, BgcVersorFP64* versor2)
inline int bgc_versor_is_identity_fp32(const BgcVersorFP32* versor)
{
return 1.0f - BGC_EPSYLON_FP32 <= versor->s0 || versor->s0 <= -(1.0 - BGC_EPSYLON_FP32);
return versor->x1 * versor->x1 + versor->x2 * versor->x2 + versor->x3 * versor->x3 <= BGC_SQUARE_EPSYLON_FP32;
}
inline int bgc_versor_is_identity_fp64(const BgcVersorFP64* versor)
{
return 1.0 - BGC_EPSYLON_FP64 <= versor->s0 || versor->s0 <= -(1.0 - BGC_EPSYLON_FP64);
return versor->x1 * versor->x1 + versor->x2 * versor->x2 + versor->x3 * versor->x3 <= BGC_SQUARE_EPSYLON_FP64;
}
// ================== Convert =================== //
@ -223,14 +261,14 @@ inline void bgc_versor_shorten_fp32(const BgcVersorFP32* versor, BgcVersorFP32*
_BgcDarkTwinVersorFP32* twin = (_BgcDarkTwinVersorFP32*)shortened;
if (versor->s0 >= 0.0f) {
twin->x1 = versor->s0;
twin->s0 = versor->s0;
twin->x1 = versor->x1;
twin->x2 = versor->x2;
twin->x3 = versor->x3;
return;
}
twin->x1 = -versor->s0;
twin->s0 = -versor->s0;
twin->x1 = -versor->x1;
twin->x2 = -versor->x2;
twin->x3 = -versor->x3;
@ -241,14 +279,14 @@ inline void bgc_versor_shorten_fp64(const BgcVersorFP64* versor, BgcVersorFP64*
_BgcDarkTwinVersorFP64* twin = (_BgcDarkTwinVersorFP64*)shortened;
if (versor->s0 >= 0.0) {
twin->x1 = versor->s0;
twin->s0 = versor->s0;
twin->x1 = versor->x1;
twin->x2 = versor->x2;
twin->x3 = versor->x3;
return;
}
twin->x1 = -versor->s0;
twin->s0 = -versor->s0;
twin->x1 = -versor->x1;
twin->x2 = -versor->x2;
twin->x3 = -versor->x3;
@ -274,6 +312,12 @@ inline void bgc_versor_invert_fp64(const BgcVersorFP64* versor, BgcVersorFP64* i
twin->x3 = -versor->x3;
}
// =============== Get Exponation =============== //
void bgc_versor_get_exponation_fp32(const BgcVersorFP32* base, const float exponent, BgcVersorFP32* power);
void bgc_versor_get_exponation_fp64(const BgcVersorFP64* base, const double exponent, BgcVersorFP64* power);
// ================ Combination ================= //
inline void bgc_versor_combine_fp32(const BgcVersorFP32* second, const BgcVersorFP32* first, BgcVersorFP32* result)
@ -332,6 +376,36 @@ inline void bgc_versor_combine3_fp64(const BgcVersorFP64* third, const BgcVersor
);
}
// ================= Exclusion ================== //
inline void bgc_versor_exclude_fp32(const BgcVersorFP32* base, const BgcVersorFP32* excludant, BgcVersorFP32* difference)
{
bgc_versor_set_values_fp32(
(base->s0 * excludant->s0 + base->x1 * excludant->x1) + (base->x2 * excludant->x2 + base->x3 * excludant->x3),
(base->x1 * excludant->s0 + base->x3 * excludant->x2) - (base->s0 * excludant->x1 + base->x2 * excludant->x3),
(base->x2 * excludant->s0 + base->x1 * excludant->x3) - (base->s0 * excludant->x2 + base->x3 * excludant->x1),
(base->x3 * excludant->s0 + base->x2 * excludant->x1) - (base->s0 * excludant->x3 + base->x1 * excludant->x2),
difference
);
}
inline void bgc_versor_exclude_fp64(const BgcVersorFP64* base, const BgcVersorFP64* excludant, BgcVersorFP64* difference)
{
bgc_versor_set_values_fp64(
(base->s0 * excludant->s0 + base->x1 * excludant->x1) + (base->x2 * excludant->x2 + base->x3 * excludant->x3),
(base->x1 * excludant->s0 + base->x3 * excludant->x2) - (base->s0 * excludant->x1 + base->x2 * excludant->x3),
(base->x2 * excludant->s0 + base->x1 * excludant->x3) - (base->s0 * excludant->x2 + base->x3 * excludant->x1),
(base->x3 * excludant->s0 + base->x2 * excludant->x1) - (base->s0 * excludant->x3 + base->x1 * excludant->x2),
difference
);
}
// ============ Sphere Interpolation ============ //
void bgc_versor_spherically_interpolate_fp32(const BgcVersorFP32* start, const BgcVersorFP32* end, const float phase, BgcVersorFP32* result);
void bgc_versor_spherically_interpolate_fp64(const BgcVersorFP64* start, const BgcVersorFP64* end, const double phase, BgcVersorFP64* result);
// ================ Get Rotation ================ //
void bgc_versor_get_rotation_fp32(const BgcVersorFP32* versor, BgcRotation3FP32* result);