Реорганизация методов для версоров и тангентов
This commit is contained in:
parent
0027924f86
commit
e39765b733
5 changed files with 147 additions and 247 deletions
|
@ -12,7 +12,7 @@
|
|||
typedef struct {
|
||||
BgcVersorFP32 versor1, versor2, result;
|
||||
//BgcMatrix3x3FP32 matrix;
|
||||
BgcVector3FP32 vector1, vector2;
|
||||
//BgcVector3FP32 vector1, vector2;
|
||||
} structure_fp32_t;
|
||||
|
||||
structure_fp32_t* allocate_structures(const unsigned int amount)
|
||||
|
@ -50,7 +50,7 @@ structure_fp32_t* make_structures(const unsigned int amount)
|
|||
bgc_versor_reset_fp32(&list[i].result);
|
||||
|
||||
//bgc_matrix3x3_set_to_identity_fp32(&list[i].matrix);
|
||||
|
||||
/*
|
||||
bgc_vector3_set_values_fp32(
|
||||
rand() * multiplier - 1.0f,
|
||||
rand() * multiplier - 1.0f,
|
||||
|
@ -59,6 +59,7 @@ structure_fp32_t* make_structures(const unsigned int amount)
|
|||
);
|
||||
|
||||
bgc_vector3_reset_fp32(&list[i].vector2);
|
||||
*/
|
||||
}
|
||||
|
||||
return list;
|
||||
|
@ -84,51 +85,37 @@ void print_vector_fp64(const BgcVector3FP64* vector)
|
|||
printf("(%lf, %lf, %lf) / %lf\n", vector->x1, vector->x2, vector->x3, bgc_vector3_get_modulus_fp64(vector));
|
||||
}
|
||||
|
||||
void item_work(structure_fp32_t* item)
|
||||
void list_work(const uint_fast32_t amount, structure_fp32_t* list)
|
||||
{
|
||||
for (unsigned int j = 0; j < 1000; j++) {
|
||||
bgc_versor_combine_fp32(&item->versor1, &item->versor2, &item->result);
|
||||
//bgc_versor_turn_vector_fp32(&item->result, &item->vector1, &item->vector2);
|
||||
for (uint_fast32_t j = 0; j < 1000; j++) {
|
||||
for (uint_fast32_t i = 0; i < amount; i++) {
|
||||
bgc_versor_combine_fp32(&list[i].versor1, &list[i].versor1, &list[i].result);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
const unsigned int amount = 1000000;
|
||||
structure_fp32_t* list;
|
||||
structure_fp32_t* list = make_structures(amount);
|
||||
|
||||
#ifdef _WIN64
|
||||
ULONGLONG now, start, end;
|
||||
now = GetTickCount64();
|
||||
srand((unsigned int)(now & 0xfffffff));
|
||||
ULONGLONG start, end;
|
||||
|
||||
start = GetTickCount64();
|
||||
|
||||
srand((unsigned int)(start & 0xfffffff));
|
||||
|
||||
start = GetTickCount64();
|
||||
#else
|
||||
struct timespec start, end;
|
||||
clock_gettime(0, &start);
|
||||
srand((unsigned int)(start.tv_nsec & 0xfffffff));
|
||||
#endif // _WIN64
|
||||
|
||||
list = make_structures(amount);
|
||||
|
||||
#ifdef _WIN64
|
||||
end = GetTickCount64();
|
||||
printf("Setup time: %lld\n", end - now);
|
||||
|
||||
start = GetTickCount64();
|
||||
#else
|
||||
clock_gettime(CLOCK_REALTIME, &end);
|
||||
printf("Time: %lf\n", (end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_nsec - start.tv_nsec) * 0.000001);
|
||||
|
||||
clock_gettime(CLOCK_REALTIME, &start);
|
||||
#endif // _WIN64
|
||||
|
||||
for (unsigned int i = 0; i < amount; i++) {
|
||||
//for (int j = 0; j < 1000; j++) {
|
||||
item_work(list + i);
|
||||
//structure_fp32_t* item = list + i;
|
||||
//bgc_versor_combine_fp32(&item->versor1, &item->versor2, &item->result);
|
||||
//bgc_versor_turn_vector_fp32(&item->result, &item->vector1, &item->vector2);
|
||||
//}
|
||||
}
|
||||
list_work(amount, list);
|
||||
|
||||
#ifdef _WIN64
|
||||
end = GetTickCount64();
|
||||
|
@ -140,9 +127,9 @@ int main()
|
|||
printf("Time: %lf\n", (end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_nsec - start.tv_nsec) * 0.000001);
|
||||
#endif // _WIN64
|
||||
|
||||
//print_versor_fp32(&list[10].versor1);
|
||||
//print_versor_fp32(&list[10].versor2);
|
||||
//print_versor_fp32(&list[10].result);
|
||||
print_versor_fp32(&list[10].versor1);
|
||||
print_versor_fp32(&list[10].versor2);
|
||||
print_versor_fp32(&list[10].result);
|
||||
|
||||
free(list);
|
||||
|
||||
|
|
|
@ -3,3 +3,35 @@
|
|||
const BgcTangentFP32 BGC_IDLE_TANGENT_FP32 = { 1.0f, 0.0f };
|
||||
|
||||
const BgcTangentFP64 BGC_IDLE_TANGENT_FP64 = { 1.0, 0.0 };
|
||||
|
||||
void _bgc_tangent_normalize_fp32(const float square_modulus, _BgcDarkTwinTangentFP32* twin)
|
||||
{
|
||||
// (square_modulus != square_modulus) is true when square_modulus is NaN
|
||||
|
||||
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
|
||||
twin->cos = 1.0f;
|
||||
twin->sin = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_modulus);
|
||||
|
||||
twin->cos *= multiplier;
|
||||
twin->sin *= multiplier;
|
||||
}
|
||||
|
||||
void _bgc_tangent_normalize_fp64(const double square_modulus, _BgcDarkTwinTangentFP64* twin)
|
||||
{
|
||||
// (square_modulus != square_modulus) is true when square_modulus is NaN
|
||||
|
||||
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
|
||||
twin->cos = 1.0;
|
||||
twin->sin = 0.0;
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_modulus);
|
||||
|
||||
twin->cos *= multiplier;
|
||||
twin->sin *= multiplier;
|
||||
}
|
||||
|
|
|
@ -55,54 +55,40 @@ inline void bgc_tangent_reset_fp64(BgcTangentFP64* tangent)
|
|||
|
||||
// ==================== Set ===================== //
|
||||
|
||||
void _bgc_tangent_normalize_fp32(const float square_modulus, _BgcDarkTwinTangentFP32* twin);
|
||||
|
||||
void _bgc_tangent_normalize_fp64(const double square_modulus, _BgcDarkTwinTangentFP64* twin);
|
||||
|
||||
inline void bgc_tangent_set_values_fp32(const float x1, const float x2, BgcTangentFP32* tangent)
|
||||
{
|
||||
const float square_module = x1 * x1 + x2 * x2;
|
||||
const float square_modulus = x1 * x1 + x2 * x2;
|
||||
|
||||
_BgcDarkTwinTangentFP32* twin = (_BgcDarkTwinTangentFP32*)tangent;
|
||||
|
||||
twin->cos = x1;
|
||||
twin->sin = x2;
|
||||
|
||||
if (1.0f - BGC_TWO_EPSYLON_FP32 <= square_module && square_module <= 1.0f + BGC_TWO_EPSYLON_FP32) {
|
||||
if (1.0f - BGC_TWO_EPSYLON_FP32 <= square_modulus && square_modulus <= 1.0f + BGC_TWO_EPSYLON_FP32) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (square_module <= BGC_SQUARE_EPSYLON_FP32) {
|
||||
twin->cos = 1.0f;
|
||||
twin->sin = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_module);
|
||||
|
||||
twin->cos = x1 * multiplier;
|
||||
twin->sin = x2 * multiplier;
|
||||
_bgc_tangent_normalize_fp32(square_modulus, twin);
|
||||
}
|
||||
|
||||
inline void bgc_tangent_set_values_fp64(const double x1, const double x2, BgcTangentFP64* tangent)
|
||||
{
|
||||
const double square_module = x1 * x1 + x2 * x2;
|
||||
const double square_modulus = x1 * x1 + x2 * x2;
|
||||
|
||||
_BgcDarkTwinTangentFP64* twin = (_BgcDarkTwinTangentFP64*)tangent;
|
||||
|
||||
twin->cos = x1;
|
||||
twin->sin = x2;
|
||||
|
||||
if (1.0 - BGC_TWO_EPSYLON_FP64 <= square_module && square_module <= 1.0 + BGC_TWO_EPSYLON_FP64) {
|
||||
if (1.0 - BGC_TWO_EPSYLON_FP64 <= square_modulus && square_modulus <= 1.0 + BGC_TWO_EPSYLON_FP64) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (square_module <= BGC_SQUARE_EPSYLON_FP64) {
|
||||
twin->cos = 1.0;
|
||||
twin->sin = 0.0;
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_module);
|
||||
|
||||
twin->cos = x1 * multiplier;
|
||||
twin->sin = x2 * multiplier;
|
||||
_bgc_tangent_normalize_fp64(square_modulus, twin);
|
||||
}
|
||||
|
||||
// ==================== Copy ==================== //
|
||||
|
|
|
@ -7,6 +7,49 @@ const BgcVersorFP32 BGC_IDLE_VERSOR_FP32 = { 1.0f, 0.0f, 0.0f, 0.0f };
|
|||
|
||||
const BgcVersorFP64 BGC_IDLE_VERSOR_FP64 = { 1.0, 0.0, 0.0, 0.0 };
|
||||
|
||||
// =============== Normalization ================ //
|
||||
|
||||
void _bgc_versor_normalize_fp32(const float square_modulus, _BgcDarkTwinVersorFP32* twin)
|
||||
{
|
||||
// (square_modulus != square_modulus) is true when square_modulus is NaN
|
||||
|
||||
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32 || square_modulus != square_modulus) {
|
||||
twin->s0 = 1.0f;
|
||||
twin->x1 = 0.0f;
|
||||
twin->x2 = 0.0f;
|
||||
twin->x3 = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
|
||||
}
|
||||
|
||||
void _bgc_versor_normalize_fp64(const double square_modulus, _BgcDarkTwinVersorFP64* twin)
|
||||
{
|
||||
// (square_modulus != square_modulus) is true when square_modulus is NaN
|
||||
|
||||
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64 || square_modulus != square_modulus) {
|
||||
twin->s0 = 1.0;
|
||||
twin->x1 = 0.0;
|
||||
twin->x2 = 0.0;
|
||||
twin->x3 = 0.0;
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
}
|
||||
|
||||
// =============== Set Crude Turn =============== //
|
||||
|
||||
void bgc_versor_set_crude_turn_fp32(const float x1, const float x2, const float x3, const float angle, const BgcAngleUnitEnum unit, BgcVersorFP32* result)
|
||||
|
|
|
@ -58,6 +58,10 @@ inline void bgc_versor_reset_fp64(BgcVersorFP64* versor)
|
|||
|
||||
// ==================== Set ===================== //
|
||||
|
||||
void _bgc_versor_normalize_fp32(const float square_modulus, _BgcDarkTwinVersorFP32* twin);
|
||||
|
||||
void _bgc_versor_normalize_fp64(const double square_modulus, _BgcDarkTwinVersorFP64* twin);
|
||||
|
||||
inline void bgc_versor_set_values_fp32(const float s0, const float x1, const float x2, const float x3, BgcVersorFP32* versor)
|
||||
{
|
||||
_BgcDarkTwinVersorFP32* twin = (_BgcDarkTwinVersorFP32*)versor;
|
||||
|
@ -73,20 +77,7 @@ inline void bgc_versor_set_values_fp32(const float s0, const float x1, const flo
|
|||
return;
|
||||
}
|
||||
|
||||
if (square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
|
||||
twin->s0 = 1.0f;
|
||||
twin->x1 = 0.0f;
|
||||
twin->x2 = 0.0f;
|
||||
twin->x3 = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
_bgc_versor_normalize_fp32(square_modulus, twin);
|
||||
}
|
||||
|
||||
inline void bgc_versor_set_values_fp64(const double s0, const double x1, const double x2, const double x3, BgcVersorFP64* versor)
|
||||
|
@ -104,20 +95,7 @@ inline void bgc_versor_set_values_fp64(const double s0, const double x1, const d
|
|||
return;
|
||||
}
|
||||
|
||||
if (square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
|
||||
twin->s0 = 1.0;
|
||||
twin->x1 = 0.0;
|
||||
twin->x2 = 0.0;
|
||||
twin->x3 = 0.0;
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
_bgc_versor_normalize_fp64(square_modulus, twin);
|
||||
}
|
||||
|
||||
// ==================== Copy ==================== //
|
||||
|
@ -386,184 +364,58 @@ inline void bgc_versor_set_inverted_fp32_to_fp64(const BgcVersorFP32* versor, Bg
|
|||
|
||||
inline void bgc_versor_combine_fp32(const BgcVersorFP32* second, const BgcVersorFP32* first, BgcVersorFP32* result)
|
||||
{
|
||||
const float s0 = (second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3);
|
||||
const float x1 = (second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3);
|
||||
const float x2 = (second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1);
|
||||
const float x3 = (second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2);
|
||||
|
||||
const float square_modulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
|
||||
|
||||
_BgcDarkTwinVersorFP32* twin = (_BgcDarkTwinVersorFP32*)result;
|
||||
|
||||
twin->s0 = s0;
|
||||
twin->x1 = x1;
|
||||
twin->x2 = x2;
|
||||
twin->x3 = x3;
|
||||
|
||||
if (1.0f - BGC_TWO_EPSYLON_FP32 <= square_modulus && square_modulus <= 1.0f + BGC_TWO_EPSYLON_FP32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
bgc_versor_set_values_fp32(
|
||||
(second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3),
|
||||
(second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3),
|
||||
(second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1),
|
||||
(second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2),
|
||||
result
|
||||
);
|
||||
}
|
||||
|
||||
inline void bgc_versor_combine_fp64(const BgcVersorFP64* second, const BgcVersorFP64* first, BgcVersorFP64* result)
|
||||
{
|
||||
const double s0 = (second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3);
|
||||
const double x1 = (second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3);
|
||||
const double x2 = (second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1);
|
||||
const double x3 = (second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2);
|
||||
|
||||
const double square_modulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
|
||||
|
||||
_BgcDarkTwinVersorFP64* twin = (_BgcDarkTwinVersorFP64*)result;
|
||||
|
||||
twin->s0 = s0;
|
||||
twin->x1 = x1;
|
||||
twin->x2 = x2;
|
||||
twin->x3 = x3;
|
||||
|
||||
if (1.0 - BGC_TWO_EPSYLON_FP64 <= square_modulus && square_modulus <= 1.0 + BGC_TWO_EPSYLON_FP64) {
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
bgc_versor_set_values_fp64(
|
||||
(second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3),
|
||||
(second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3),
|
||||
(second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1),
|
||||
(second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2),
|
||||
result
|
||||
);
|
||||
}
|
||||
|
||||
// ============ Combination of three ============ //
|
||||
|
||||
inline void bgc_versor_combine3_fp32(const BgcVersorFP32* third, const BgcVersorFP32* second, const BgcVersorFP32* first, BgcVersorFP32* result)
|
||||
{
|
||||
const float s0a = (second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3);
|
||||
const float x1a = (second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3);
|
||||
const float x2a = (second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1);
|
||||
const float x3a = (second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2);
|
||||
const float s0 = (second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3);
|
||||
const float x1 = (second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3);
|
||||
const float x2 = (second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1);
|
||||
const float x3 = (second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2);
|
||||
|
||||
const float s0b = (third->s0 * s0a - third->x1 * x1a) - (third->x2 * x2a + third->x3 * x3a);
|
||||
const float x1b = (third->x1 * s0a + third->s0 * x1a) - (third->x3 * x2a - third->x2 * x3a);
|
||||
const float x2b = (third->x2 * s0a + third->s0 * x2a) - (third->x1 * x3a - third->x3 * x1a);
|
||||
const float x3b = (third->x3 * s0a + third->s0 * x3a) - (third->x2 * x1a - third->x1 * x2a);
|
||||
|
||||
const float square_modulus = (s0b * s0b + x1b * x1b) + (x2b * x2b + x3b * x3b);
|
||||
|
||||
_BgcDarkTwinVersorFP32* twin = (_BgcDarkTwinVersorFP32*)result;
|
||||
|
||||
twin->s0 = s0b;
|
||||
twin->x1 = x1b;
|
||||
twin->x2 = x2b;
|
||||
twin->x3 = x3b;
|
||||
|
||||
if (1.0f - BGC_TWO_EPSYLON_FP32 <= square_modulus && square_modulus <= 1.0f + BGC_TWO_EPSYLON_FP32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
bgc_versor_set_values_fp32(
|
||||
(third->s0 * s0 - third->x1 * x1) - (third->x2 * x2 + third->x3 * x3),
|
||||
(third->x1 * s0 + third->s0 * x1) - (third->x3 * x2 - third->x2 * x3),
|
||||
(third->x2 * s0 + third->s0 * x2) - (third->x1 * x3 - third->x3 * x1),
|
||||
(third->x3 * s0 + third->s0 * x3) - (third->x2 * x1 - third->x1 * x2),
|
||||
result
|
||||
);
|
||||
}
|
||||
|
||||
inline void bgc_versor_combine3_fp64(const BgcVersorFP64* third, const BgcVersorFP64* second, const BgcVersorFP64* first, BgcVersorFP64* result)
|
||||
{
|
||||
const double s0a = (second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3);
|
||||
const double x1a = (second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3);
|
||||
const double x2a = (second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1);
|
||||
const double x3a = (second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2);
|
||||
const double s0 = (second->s0 * first->s0 - second->x1 * first->x1) - (second->x2 * first->x2 + second->x3 * first->x3);
|
||||
const double x1 = (second->x1 * first->s0 + second->s0 * first->x1) - (second->x3 * first->x2 - second->x2 * first->x3);
|
||||
const double x2 = (second->x2 * first->s0 + second->s0 * first->x2) - (second->x1 * first->x3 - second->x3 * first->x1);
|
||||
const double x3 = (second->x3 * first->s0 + second->s0 * first->x3) - (second->x2 * first->x1 - second->x1 * first->x2);
|
||||
|
||||
const double s0b = (third->s0 * s0a - third->x1 * x1a) - (third->x2 * x2a + third->x3 * x3a);
|
||||
const double x1b = (third->x1 * s0a + third->s0 * x1a) - (third->x3 * x2a - third->x2 * x3a);
|
||||
const double x2b = (third->x2 * s0a + third->s0 * x2a) - (third->x1 * x3a - third->x3 * x1a);
|
||||
const double x3b = (third->x3 * s0a + third->s0 * x3a) - (third->x2 * x1a - third->x1 * x2a);
|
||||
|
||||
const double square_modulus = (s0b * s0b + x1b * x1b) + (x2b * x2b + x3b * x3b);
|
||||
|
||||
_BgcDarkTwinVersorFP64* twin = (_BgcDarkTwinVersorFP64*)result;
|
||||
|
||||
twin->s0 = s0b;
|
||||
twin->x1 = x1b;
|
||||
twin->x2 = x2b;
|
||||
twin->x3 = x3b;
|
||||
|
||||
if (1.0 - BGC_TWO_EPSYLON_FP64 <= square_modulus && square_modulus <= 1.0 + BGC_TWO_EPSYLON_FP64) {
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
}
|
||||
|
||||
// ================= Exclusion ================== //
|
||||
|
||||
inline void bgc_versor_exclude_fp32(const BgcVersorFP32* basic, const BgcVersorFP32* exclusion, BgcVersorFP32* result)
|
||||
{
|
||||
const float s0 = (basic->s0 * exclusion->s0 + basic->x1 * exclusion->x1) + (basic->x2 * exclusion->x2 + basic->x3 * exclusion->x3);
|
||||
const float x1 = (basic->x1 * exclusion->s0 - basic->s0 * exclusion->x1) + (basic->x3 * exclusion->x2 - basic->x2 * exclusion->x3);
|
||||
const float x2 = (basic->x2 * exclusion->s0 - basic->s0 * exclusion->x2) + (basic->x1 * exclusion->x3 - basic->x3 * exclusion->x1);
|
||||
const float x3 = (basic->x3 * exclusion->s0 - basic->s0 * exclusion->x3) + (basic->x2 * exclusion->x1 - basic->x1 * exclusion->x2);
|
||||
|
||||
const float square_modulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
|
||||
|
||||
_BgcDarkTwinVersorFP32* twin = (_BgcDarkTwinVersorFP32*)result;
|
||||
|
||||
twin->s0 = s0;
|
||||
twin->x1 = x1;
|
||||
twin->x2 = x2;
|
||||
twin->x3 = x3;
|
||||
|
||||
if (1.0f - BGC_TWO_EPSYLON_FP32 <= square_modulus && square_modulus <= 1.0f + BGC_TWO_EPSYLON_FP32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float multiplier = sqrtf(1.0f / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
}
|
||||
|
||||
inline void bgc_versor_exclude_fp64(const BgcVersorFP64* basic, const BgcVersorFP64* exclusion, BgcVersorFP64* result)
|
||||
{
|
||||
const double s0 = (basic->s0 * exclusion->s0 + basic->x1 * exclusion->x1) + (basic->x2 * exclusion->x2 + basic->x3 * exclusion->x3);
|
||||
const double x1 = (basic->x1 * exclusion->s0 - basic->s0 * exclusion->x1) + (basic->x3 * exclusion->x2 - basic->x2 * exclusion->x3);
|
||||
const double x2 = (basic->x2 * exclusion->s0 - basic->s0 * exclusion->x2) + (basic->x1 * exclusion->x3 - basic->x3 * exclusion->x1);
|
||||
const double x3 = (basic->x3 * exclusion->s0 - basic->s0 * exclusion->x3) + (basic->x2 * exclusion->x1 - basic->x1 * exclusion->x2);
|
||||
|
||||
const double square_modulus = (s0 * s0 + x1 * x1) + (x2 * x2 + x3 * x3);
|
||||
|
||||
_BgcDarkTwinVersorFP64* twin = (_BgcDarkTwinVersorFP64*)result;
|
||||
|
||||
twin->s0 = s0;
|
||||
twin->x1 = x1;
|
||||
twin->x2 = x2;
|
||||
twin->x3 = x3;
|
||||
|
||||
if (1.0 - BGC_TWO_EPSYLON_FP64 <= square_modulus && square_modulus <= 1.0 + BGC_TWO_EPSYLON_FP64) {
|
||||
return;
|
||||
}
|
||||
|
||||
const double multiplier = sqrt(1.0 / square_modulus);
|
||||
|
||||
twin->s0 *= multiplier;
|
||||
twin->x1 *= multiplier;
|
||||
twin->x2 *= multiplier;
|
||||
twin->x3 *= multiplier;
|
||||
bgc_versor_set_values_fp64(
|
||||
(third->s0 * s0 - third->x1 * x1) - (third->x2 * x2 + third->x3 * x3),
|
||||
(third->x1 * s0 + third->s0 * x1) - (third->x3 * x2 - third->x2 * x3),
|
||||
(third->x2 * s0 + third->s0 * x2) - (third->x1 * x3 - third->x3 * x1),
|
||||
(third->x3 * s0 + third->s0 * x3) - (third->x2 * x1 - third->x1 * x2),
|
||||
result
|
||||
);
|
||||
}
|
||||
|
||||
// ================= Rotation3 ================== //
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue