Добавление функций определения поворотов (versor) между направлениями и базисами

This commit is contained in:
Andrey Pokidov 2025-06-04 23:47:55 +07:00
parent e6a94ab8d9
commit 2a4d5522d3
12 changed files with 784 additions and 287 deletions

View file

@ -53,12 +53,12 @@ structure_fp32_t* make_structures(const unsigned int amount)
void print_versor_fp32(const BgcVersorFP32* versor) void print_versor_fp32(const BgcVersorFP32* versor)
{ {
printf("Versor (%f, %f, %f, %f)\n", versor->s0, versor->x1, versor->x2, versor->x3); printf("Versor (s0 = %0.12f, x1 = %0.12f, x2 = %0.12f, x3 = %0.12f)\n", versor->s0, versor->x1, versor->x2, versor->x3);
} }
void print_versor_fp64(const BgcVersorFP64* versor) void print_versor_fp64(const BgcVersorFP64* versor)
{ {
printf("Versor (%lf, %lf, %lf, %lf)\n", versor->s0, versor->x1, versor->x2, versor->x3); printf("Versor (s0 = %0.20f, x1 = %0.20f, x2 = %0.20f, x3 = %0.20f)\n", versor->s0, versor->x1, versor->x2, versor->x3);
} }
void print_vector_fp32(const BgcVector3FP32* vector) void print_vector_fp32(const BgcVector3FP32* vector)
@ -149,7 +149,328 @@ int main() {
} }
*/ */
int main() { void test_basis_difference_fp32()
{
BgcVector3FP32 initial_primary, initial_auxiliary;
BgcVector3FP32 final_primary, final_auxiliary;
BgcVersorFP32 turn;
// No turn
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nNo turn:\n");
print_versor_fp32(&turn);
// Turn around (1, 1, 0) axis on 180 degrees
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nTurn around (1, 1, 0) axis on 180 degrees:\n");
print_versor_fp32(&turn);
// 180 degree turn
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(-1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n180 degree turn around (0, 1, 0):\n");
print_versor_fp32(&turn);
// 90 degree turn around x3 axis
bgc_vector3_set_values_fp32(2.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 3.1f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 10.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n90 degree turn around (0, 0, 1):\n");
print_versor_fp32(&turn);
// Unorthogonal pairs turn at 90 degrees around x3 axis
bgc_vector3_set_values_fp32(2.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(-2.0f, 3.1f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 10.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-1.0f, 5.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nUnorthogonal pairs turn at 90 degrees around (0, 0, 1):\n");
print_versor_fp32(&turn);
// Zero vectors
bgc_vector3_set_values_fp32(0.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
int code;
code = bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nZero vectors: this cannot be!\n");
print_versor_fp32(&turn);
}
else {
printf("\nZero vector validation works fine\n");
}
// Parallel vectors
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(2.0f, 0.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_auxiliary);
code = bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nParallel vectors: this cannot be!\n");
print_versor_fp32(&turn);
}
else {
printf("\nParallelism validation works fine\n");
}
// Small angle turn (about 1 degree):
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.999848f, 0.017452f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-0.017452f, 0.999848f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nSmall angle turn (about 1 degree):\n");
print_versor_fp32(&turn);
// About 179 degrees turn
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(-0.999848f, -0.017452f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.017452f, -0.999848f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 179 degrees turn:\n");
print_versor_fp32(&turn);
// 120 degrees around (-1, -1, 1)
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(0.0f, 0.0f, -1.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n120 degees turn:\n");
print_versor_fp32(&turn);
// About 1 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(0.999848f, 0.017452f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, 1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(-1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 1 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp32(&turn);
// About 0.01 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &initial_primary);
bgc_vector3_set_values_fp32(1.0f, 0.000001f, 0.0f, &initial_auxiliary);
bgc_vector3_set_values_fp32(0.0f, -1.0f, 0.0f, &final_primary);
bgc_vector3_set_values_fp32(1.0f, 0.0f, 0.0f, &final_auxiliary);
bgc_versor_make_basis_difference_fp32(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 0.01 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp32(&turn);
}
void test_basis_difference_fp64()
{
BgcVector3FP64 initial_primary, initial_auxiliary;
BgcVector3FP64 final_primary, final_auxiliary;
BgcVersorFP64 turn;
// No turn
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nNo turn:\n");
print_versor_fp64(&turn);
// Turn around (1, 1, 0) axis on 180 degrees
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nTurn around (1, 1, 0) axis on 180 degrees:\n");
print_versor_fp64(&turn);
// 180 degree turn
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(-1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n180 degree turn around (0, 1, 0):\n");
print_versor_fp64(&turn);
// 90 degree turn around x3 axis
bgc_vector3_set_values_fp64(2.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 3.1, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 10.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n90 degree turn around (0, 0, 1):\n");
print_versor_fp64(&turn);
// Unorthogonal pairs turn at 90 degrees around x3 axis
bgc_vector3_set_values_fp64(2.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(-2.0, 3.1, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 10.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-1.0, 5.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nUnorthogonal pairs turn at 90 degrees around (0, 0, 1):\n");
print_versor_fp64(&turn);
// Zero vectors
bgc_vector3_set_values_fp64(0.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
int code;
code = bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nZero vectors: this cannot be!\n");
print_versor_fp64(&turn);
}
else {
printf("\nZero vector validation works fine\n");
}
// Parallel vectors
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(2.0, 0.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_auxiliary);
code = bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
if (code >= 0) {
printf("\nParallel vectors: this cannot be!\n");
print_versor_fp64(&turn);
}
else {
printf("\nParallelism validation works fine\n");
}
// Small angle turn (about 1 degree):
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.999848, 0.017452, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-0.017452, 0.999848, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nSmall angle turn (about 1 degree):\n");
print_versor_fp64(&turn);
// About 179 degrees turn
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(-0.999848, -0.017452, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.017452, -0.999848, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 179 degrees turn:\n");
print_versor_fp64(&turn);
// 120 degrees around (-1, -1, 1)
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(0.0, 0.0, -1.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\n120 degees turn:\n");
print_versor_fp64(&turn);
// About 1 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(0.999848, 0.017452, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, 1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(-1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 1 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp64(&turn);
// About 0.001 degree turn difference between initial_primary and initial_auxiliary directions
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &initial_primary);
bgc_vector3_set_values_fp64(1.0, 0.000001, 0.0, &initial_auxiliary);
bgc_vector3_set_values_fp64(0.0, -1.0, 0.0, &final_primary);
bgc_vector3_set_values_fp64(1.0, 0.0, 0.0, &final_auxiliary);
bgc_versor_make_basis_difference_fp64(&initial_primary, &initial_auxiliary, &final_primary, &final_auxiliary, &turn);
printf("\nAbout 0.01 degree turn difference between initial_primary and initial_auxiliary directions:\n");
print_versor_fp64(&turn);
}
int main()
{
//BgcVersorFP32 start = { 1.0f, 0.0f, 0.0f, 0.0f }; //BgcVersorFP32 start = { 1.0f, 0.0f, 0.0f, 0.0f };
//BgcVersorFP32 end = { 0.0f, 1.0f, 0.0f, 0.0f }; //BgcVersorFP32 end = { 0.0f, 1.0f, 0.0f, 0.0f };
/* /*
@ -162,12 +483,7 @@ int main() {
printf("Result: %0.12f, %0.12f, %0.12f, %0.12f\n", result.s0, result.x1, result.x2, result.x3); printf("Result: %0.12f, %0.12f, %0.12f, %0.12f\n", result.s0, result.x1, result.x2, result.x3);
*/ */
BgcVersorFP64 start = { 1.0, 0.0, 0.0, 0.0 }; test_basis_difference_fp64();
BgcVersorFP64 end = { -0.707, 0.707, 0.0, 0.0 };
BgcVersorFP64 result;
BgcSlerpFP64 slerp;
bgc_slerp_make_full_fp64(&start, &end, &slerp);
bgc_slerp_get_turn_for_phase_fp64(&slerp, 0.5f, &result);
printf("Result: %0.15f, %0.15f, %0.15f, %0.15f\n", result.s0, result.x1, result.x2, result.x3);
return 0; return 0;
} }

View file

@ -21,7 +21,6 @@
<ItemGroup> <ItemGroup>
<ClInclude Include="angle.h" /> <ClInclude Include="angle.h" />
<ClInclude Include="basic-geometry.h" /> <ClInclude Include="basic-geometry.h" />
<ClInclude Include="basis3.h" />
<ClInclude Include="complex.h" /> <ClInclude Include="complex.h" />
<ClInclude Include="cotes-number.h" /> <ClInclude Include="cotes-number.h" />
<ClInclude Include="matrix2x2.h" /> <ClInclude Include="matrix2x2.h" />
@ -41,7 +40,6 @@
<ClCompile Include="angle.c" /> <ClCompile Include="angle.c" />
<ClInclude Include="complex.c" /> <ClInclude Include="complex.c" />
<ClInclude Include="cotes-number.c" /> <ClInclude Include="cotes-number.c" />
<ClCompile Include="basis3.c" />
<ClCompile Include="utilities.c" /> <ClCompile Include="utilities.c" />
<ClCompile Include="matrix2x2.c" /> <ClCompile Include="matrix2x2.c" />
<ClCompile Include="matrix2x3.c" /> <ClCompile Include="matrix2x3.c" />

View file

@ -69,9 +69,6 @@
<ClInclude Include="slerp.h"> <ClInclude Include="slerp.h">
<Filter>Файлы заголовков</Filter> <Filter>Файлы заголовков</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="basis3.h">
<Filter>Файлы заголовков</Filter>
</ClInclude>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="angle.c"> <ClCompile Include="angle.c">
@ -113,8 +110,5 @@
<ClCompile Include="slerp.c"> <ClCompile Include="slerp.c">
<Filter>Исходные файлы</Filter> <Filter>Исходные файлы</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="basis3.c">
<Filter>Исходные файлы</Filter>
</ClCompile>
</ItemGroup> </ItemGroup>
</Project> </Project>

View file

@ -1,232 +0,0 @@
#include <math.h>
#include "./basis3.h"
typedef struct {
int e1, e2, e3;
} _BgcBasis3State;
static inline void _bgc_basis3_state_reset(_BgcBasis3State* state)
{
state->e1 = 0;
state->e2 = 0;
state->e3 = 0;
}
static inline int _bgc_basis3_validate_directions(const int primary_direction, const int auxiliary_direction)
{
if (!bgc_is_correct_direction(primary_direction)) {
return BGC_ERROR_BASIS3_PRIMARY_DIRECTION_UNKNOWN;
}
if (!bgc_is_correct_direction(auxiliary_direction)) {
return BGC_ERROR_BASIS3_AUXILIARY_DIRECTION_UNKNOWN;
}
if (primary_direction == auxiliary_direction || primary_direction == -auxiliary_direction) {
return BGC_ERROR_BASIS3_PRIMARY_AUXILIARY_PARALLEL;
}
return BGC_SUCCESS;
}
static inline void _bgc_basis3_load_axis_fp32(const int direction, const BgcVector3FP32* axis, _BgcBasis3State* state, BgcBasis3FP32* basis)
{
switch (direction) {
case BGC_DIRECTION_X1:
bgc_vector3_copy_fp32(axis, &basis->e1);
state->e1 = 1;
break;
case -BGC_DIRECTION_X1:
bgc_vector3_reverse_fp32(axis, &basis->e1);
state->e1 = 1;
break;
case BGC_DIRECTION_X2:
bgc_vector3_copy_fp32(axis, &basis->e2);
state->e2 = 1;
break;
case -BGC_DIRECTION_X2:
bgc_vector3_reverse_fp32(axis, &basis->e2);
state->e2 = 1;
break;
case BGC_DIRECTION_X3:
bgc_vector3_copy_fp32(axis, &basis->e3);
state->e3 = 1;
break;
case -BGC_DIRECTION_X3:
bgc_vector3_reverse_fp32(axis, &basis->e3);
state->e3 = 1;
break;
}
}
int bgc_basis3_make_from_directions_fp32(
const int primary_direction, const BgcVector3FP32* primary_vector,
const int auxiliary_direction, const BgcVector3FP32* auxiliary_vector,
BgcBasis3FP32* basis
) {
const int direstion_validation_code = _bgc_basis3_validate_directions(primary_direction, auxiliary_direction);
if (direstion_validation_code != BGC_SUCCESS) {
return direstion_validation_code;
}
const float primary_square_modulus = bgc_vector3_get_square_modulus_fp32(primary_vector);
if (primary_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return BGC_ERROR_BASIS3_PRIMARY_VECTOR_IS_ZERO;
}
const float auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp32(auxiliary_vector);
if (auxiliary_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
return BGC_ERROR_BASIS3_AUXILIARY_VECTOR_IS_ZERO;
}
BgcVector3FP32 orthogonal;
bgc_vector3_get_cross_product_fp32(primary_vector, auxiliary_vector, &orthogonal);
const float orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp32(&orthogonal);
if (orthogonal_square_modulus <= BGC_SQUARE_EPSYLON_FP32 * primary_square_modulus * auxiliary_square_modulus) {
return BGC_ERROR_BASIS3_PRIMARY_AUXILIARY_PARALLEL;
}
BgcVector3FP32 primary_axis, auxiliary_axis;
bgc_vector3_multiply_fp32(primary_vector, sqrtf(1.0f / primary_square_modulus), &primary_axis);
bgc_vector3_subtract_scaled_fp32(auxiliary_vector, &primary_axis, bgc_vector3_get_scalar_product_fp32(auxiliary_vector, &primary_axis), &auxiliary_axis);
bgc_vector3_multiply_fp32(&auxiliary_axis, sqrtf(1.0f / bgc_vector3_get_square_modulus_fp32(&auxiliary_axis)), &auxiliary_axis);
_BgcBasis3State state;
_bgc_basis3_state_reset(&state);
_bgc_basis3_load_axis_fp32(primary_direction, &primary_axis, &state, basis);
_bgc_basis3_load_axis_fp32(auxiliary_direction, &auxiliary_axis, &state, basis);
if (!state.e1) {
bgc_vector3_get_cross_product_fp32(&basis->e2, &basis->e3, &basis->e1);
bgc_vector3_normalize_fp32(&basis->e1);
return BGC_SUCCESS;
}
if (!state.e2) {
bgc_vector3_get_cross_product_fp32(&basis->e3, &basis->e1, &basis->e2);
bgc_vector3_normalize_fp32(&basis->e2);
return BGC_SUCCESS;
}
bgc_vector3_get_cross_product_fp32(&basis->e1, &basis->e2, &basis->e3);
bgc_vector3_normalize_fp32(&basis->e3);
return BGC_SUCCESS;
}
static inline void _bgc_basis3_load_axis_fp64(const int direction, const BgcVector3FP64* axis, _BgcBasis3State* state, BgcBasis3FP64* basis)
{
switch (direction) {
case BGC_DIRECTION_X1:
bgc_vector3_copy_fp64(axis, &basis->e1);
state->e1 = 1;
break;
case -BGC_DIRECTION_X1:
bgc_vector3_reverse_fp64(axis, &basis->e1);
state->e1 = 1;
break;
case BGC_DIRECTION_X2:
bgc_vector3_copy_fp64(axis, &basis->e2);
state->e2 = 1;
break;
case -BGC_DIRECTION_X2:
bgc_vector3_reverse_fp64(axis, &basis->e2);
state->e2 = 1;
break;
case BGC_DIRECTION_X3:
bgc_vector3_copy_fp64(axis, &basis->e3);
state->e3 = 1;
break;
case -BGC_DIRECTION_X3:
bgc_vector3_reverse_fp64(axis, &basis->e3);
state->e3 = 1;
break;
}
}
int bgc_basis3_make_from_directions_fp64(
const int primary_direction, const BgcVector3FP64* primary_vector,
const int auxiliary_direction, const BgcVector3FP64* auxiliary_vector,
BgcBasis3FP64* basis
) {
const int direstion_validation_code = _bgc_basis3_validate_directions(primary_direction, auxiliary_direction);
if (direstion_validation_code != BGC_SUCCESS) {
return direstion_validation_code;
}
const double primary_square_modulus = bgc_vector3_get_square_modulus_fp64(primary_vector);
if (primary_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return BGC_ERROR_BASIS3_PRIMARY_VECTOR_IS_ZERO;
}
const double auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp64(auxiliary_vector);
if (auxiliary_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
return BGC_ERROR_BASIS3_AUXILIARY_VECTOR_IS_ZERO;
}
BgcVector3FP64 orthogonal;
bgc_vector3_get_cross_product_fp64(primary_vector, auxiliary_vector, &orthogonal);
const double orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp64(&orthogonal);
if (orthogonal_square_modulus <= BGC_SQUARE_EPSYLON_FP64 * primary_square_modulus * auxiliary_square_modulus) {
return BGC_ERROR_BASIS3_PRIMARY_AUXILIARY_PARALLEL;
}
BgcVector3FP64 primary_axis, auxiliary_axis;
bgc_vector3_multiply_fp64(primary_vector, sqrt(1.0 / primary_square_modulus), &primary_axis);
bgc_vector3_subtract_scaled_fp64(auxiliary_vector, &primary_axis, bgc_vector3_get_scalar_product_fp64(auxiliary_vector, &primary_axis), &auxiliary_axis);
bgc_vector3_multiply_fp64(&auxiliary_axis, sqrt(1.0 / bgc_vector3_get_square_modulus_fp64(&auxiliary_axis)), &auxiliary_axis);
_BgcBasis3State state;
_bgc_basis3_state_reset(&state);
_bgc_basis3_load_axis_fp64(primary_direction, &primary_axis, &state, basis);
_bgc_basis3_load_axis_fp64(auxiliary_direction, &auxiliary_axis, &state, basis);
if (!state.e1) {
bgc_vector3_get_cross_product_fp64(&basis->e2, &basis->e3, &basis->e1);
bgc_vector3_normalize_fp64(&basis->e1);
return BGC_SUCCESS;
}
if (!state.e2) {
bgc_vector3_get_cross_product_fp64(&basis->e3, &basis->e1, &basis->e2);
bgc_vector3_normalize_fp64(&basis->e2);
return BGC_SUCCESS;
}
bgc_vector3_get_cross_product_fp64(&basis->e1, &basis->e2, &basis->e3);
bgc_vector3_normalize_fp64(&basis->e3);
return BGC_SUCCESS;
}

View file

@ -1,35 +0,0 @@
#ifndef _BGC_BASIS3_H_
#define _BGC_BASIS3_H_
#include "./vector3.h"
#define BGC_ERROR_BASIS3_PRIMARY_DIRECTION_UNKNOWN -3001
#define BGC_ERROR_BASIS3_PRIMARY_VECTOR_IS_ZERO -3002
#define BGC_ERROR_BASIS3_AUXILIARY_DIRECTION_UNKNOWN -3011
#define BGC_ERROR_BASIS3_AUXILIARY_VECTOR_IS_ZERO -3012
#define BGC_ERROR_BASIS3_PRIMARY_AUXILIARY_PARALLEL -3021
typedef struct {
BgcVector3FP32 e1, e2, e3;
} BgcBasis3FP32;
typedef struct {
BgcVector3FP64 e1, e2, e3;
} BgcBasis3FP64;
int bgc_basis3_make_from_directions_fp32(
const int primary_direction, const BgcVector3FP32* primary_vector,
const int auxiliary_direction, const BgcVector3FP32* auxiliary_vector,
BgcBasis3FP32* basis
);
int bgc_basis3_make_from_directions_fp64(
const int primary_direction, const BgcVector3FP64* primary_vector,
const int auxiliary_direction, const BgcVector3FP64* auxiliary_vector,
BgcBasis3FP64* basis
);
#endif

View file

@ -4,7 +4,7 @@
#define BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 1.0f #define BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP32 1.0f
#define BGC_EPSYLON_FP32 4.76837E-7f #define BGC_EPSYLON_FP32 4.76837E-7f
#define BGC_SQUARE_EPSYLON_FP32 2.27373906E-13f #define BGC_SQUARE_EPSYLON_FP32 (BGC_EPSYLON_FP32 * BGC_EPSYLON_FP32)
#define BGC_ONE_THIRD_FP32 0.3333333333f #define BGC_ONE_THIRD_FP32 0.3333333333f
#define BGC_ONE_SIXTH_FP32 0.1666666667f #define BGC_ONE_SIXTH_FP32 0.1666666667f
@ -19,7 +19,7 @@
#define BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 1.0 #define BGC_EPSYLON_EFFECTIVENESS_LIMIT_FP64 1.0
#define BGC_EPSYLON_FP64 4.996003611E-14 #define BGC_EPSYLON_FP64 4.996003611E-14
#define BGC_SQUARE_EPSYLON_FP64 2.496005208112504E-27 #define BGC_SQUARE_EPSYLON_FP64 (BGC_EPSYLON_FP64 * BGC_EPSYLON_FP64)
#define BGC_ONE_THIRD_FP64 0.3333333333333333333 #define BGC_ONE_THIRD_FP64 0.3333333333333333333
#define BGC_ONE_SIXTH_FP64 0.1666666666666666667 #define BGC_ONE_SIXTH_FP64 0.1666666666666666667

View file

@ -6,6 +6,9 @@ extern inline void bgc_vector2_reset_fp64(BgcVector2FP64* vector);
extern inline void bgc_vector2_set_values_fp32(const float x1, const float x2, BgcVector2FP32* destination); extern inline void bgc_vector2_set_values_fp32(const float x1, const float x2, BgcVector2FP32* destination);
extern inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVector2FP64* destination); extern inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVector2FP64* destination);
extern inline int bgc_vector2_get_direction_fp32(const int direction, BgcVector2FP32* vector);
extern inline int bgc_vector2_get_direction_fp64(const int direction, BgcVector2FP64* vector);
extern inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector); extern inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector);
extern inline double bgc_vector2_get_square_modulus_fp64(const BgcVector2FP64* vector); extern inline double bgc_vector2_get_square_modulus_fp64(const BgcVector2FP64* vector);

View file

@ -44,6 +44,62 @@ inline void bgc_vector2_set_values_fp64(const double x1, const double x2, BgcVec
destination->x2 = x2; destination->x2 = x2;
} }
// ================= Directions ================= //
inline int bgc_vector2_get_direction_fp32(const int direction, BgcVector2FP32* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0f;
vector->x2 = 0.0f;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = 1.0f;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0f;
vector->x2 = 0.0f;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = -1.0f;
return 1;
}
return 0;
}
inline int bgc_vector2_get_direction_fp64(const int direction, BgcVector2FP64* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0;
vector->x2 = 0.0;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = 1.0;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0;
vector->x2 = 0.0;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = -1.0;
return 1;
}
return 0;
}
// ================== Modulus =================== // // ================== Modulus =================== //
inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector) inline float bgc_vector2_get_square_modulus_fp32(const BgcVector2FP32* vector)

View file

@ -6,6 +6,9 @@ extern inline void bgc_vector3_reset_fp64(BgcVector3FP64* vector);
extern inline void bgc_vector3_set_values_fp32(const float x1, const float x2, const float x3, BgcVector3FP32* destination); extern inline void bgc_vector3_set_values_fp32(const float x1, const float x2, const float x3, BgcVector3FP32* destination);
extern inline void bgc_vector3_set_values_fp64(const double x1, const double x2, const double x3, BgcVector3FP64* destination); extern inline void bgc_vector3_set_values_fp64(const double x1, const double x2, const double x3, BgcVector3FP64* destination);
inline int bgc_vector3_get_direction_fp32(const int direction, BgcVector3FP32* vector);
inline int bgc_vector3_get_direction_fp64(const int direction, BgcVector3FP64* vector);
extern inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector); extern inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector);
extern inline double bgc_vector3_get_square_modulus_fp64(const BgcVector3FP64* vector); extern inline double bgc_vector3_get_square_modulus_fp64(const BgcVector3FP64* vector);

View file

@ -50,6 +50,94 @@ inline void bgc_vector3_set_values_fp64(const double x1, const double x2, const
destination->x3 = x3; destination->x3 = x3;
} }
// ================= Directions ================= //
inline int bgc_vector3_get_direction_fp32(const int direction, BgcVector3FP32* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0f;
vector->x2 = 0.0f;
vector->x3 = 0.0f;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = 1.0f;
vector->x3 = 0.0f;
return 1;
case BGC_DIRECTION_X3:
vector->x1 = 0.0f;
vector->x2 = 0.0f;
vector->x3 = 1.0f;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0f;
vector->x2 = 0.0f;
vector->x3 = 0.0f;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0f;
vector->x2 = -1.0f;
vector->x3 = 0.0f;
return 1;
case -BGC_DIRECTION_X3:
vector->x1 = 0.0f;
vector->x2 = 0.0f;
vector->x3 = -1.0f;
return 1;
}
return 0;
}
inline int bgc_vector3_get_direction_fp64(const int direction, BgcVector3FP64* vector)
{
switch (direction) {
case BGC_DIRECTION_X1:
vector->x1 = 1.0;
vector->x2 = 0.0;
vector->x3 = 0.0;
return 1;
case BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = 1.0;
vector->x3 = 0.0;
return 1;
case BGC_DIRECTION_X3:
vector->x1 = 0.0;
vector->x2 = 0.0;
vector->x3 = 1.0;
return 1;
case -BGC_DIRECTION_X1:
vector->x1 = -1.0;
vector->x2 = 0.0;
vector->x3 = 0.0;
return 1;
case -BGC_DIRECTION_X2:
vector->x1 = 0.0;
vector->x2 = -1.0;
vector->x3 = 0.0;
return 1;
case -BGC_DIRECTION_X3:
vector->x1 = 0.0;
vector->x2 = 0.0;
vector->x3 = -1.0;
return 1;
}
return 0;
}
// ================== Modulus =================== // // ================== Modulus =================== //
inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector) inline float bgc_vector3_get_square_modulus_fp32(const BgcVector3FP32* vector)

View file

@ -151,6 +151,274 @@ void bgc_versor_set_turn_fp64(const double x1, const double x2, const double x3,
bgc_versor_set_values_fp64(cos(half_angle), x1 * multiplier, x2 * multiplier, x3 * multiplier, result); bgc_versor_set_values_fp64(cos(half_angle), x1 * multiplier, x2 * multiplier, x3 * multiplier, result);
} }
// ========= Make Direction Difference ========== //
inline int _bgc_versor_make_direction_turn_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, const float square_modulus_product, BgcVersorFP32* result)
{
BgcVector3FP32 orthogonal_axis;
bgc_vector3_get_cross_product_fp32(start, end, &orthogonal_axis);
const float scalar_product = bgc_vector3_get_scalar_product_fp32(start, end);
const float square_modulus = bgc_vector3_get_square_modulus_fp32(&orthogonal_axis);
const float square_sine = square_modulus / square_modulus_product;
if (square_sine > BGC_SQUARE_EPSYLON_FP32) {
const float cosine = scalar_product / sqrtf(square_modulus_product);
const float angle = 0.5f * atan2f(sqrtf(square_sine), cosine);
const float multiplier = sinf(angle) * sqrtf(1.0f / square_modulus);
bgc_versor_set_values_fp32(cosf(angle), orthogonal_axis.x1 * multiplier, orthogonal_axis.x2 * multiplier, orthogonal_axis.x3 * multiplier, result);
return BGC_SOME_TURN;
}
if (scalar_product < 0.0f) {
return BGC_OPPOSITE;
}
bgc_versor_reset_fp32(result);
return BGC_ZERO_TURN;
}
inline int _bgc_versor_make_direction_turn_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, const double square_modulus_product, BgcVersorFP64* result)
{
BgcVector3FP64 orthogonal_axis;
bgc_vector3_get_cross_product_fp64(start, end, &orthogonal_axis);
const double scalar_product = bgc_vector3_get_scalar_product_fp64(start, end);
const double square_modulus = bgc_vector3_get_square_modulus_fp64(&orthogonal_axis);
const double square_sine = square_modulus / square_modulus_product;
if (square_sine > BGC_SQUARE_EPSYLON_FP64) {
const double cosine = scalar_product / sqrt(square_modulus_product);
const double angle = 0.5 * atan2(sqrt(square_sine), cosine);
const double multiplier = sin(angle) * sqrt(1.0f / square_modulus);
bgc_versor_set_values_fp64(cos(angle), orthogonal_axis.x1 * multiplier, orthogonal_axis.x2 * multiplier, orthogonal_axis.x3 * multiplier, result);
return BGC_SOME_TURN;
}
if (scalar_product < 0.0) {
return BGC_OPPOSITE;
}
bgc_versor_reset_fp64(result);
return BGC_ZERO_TURN;
}
int bgc_versor_make_direction_difference_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, BgcVersorFP32* result)
{
const float start_square_modulus = bgc_vector3_get_square_modulus_fp32(start);
const float end_square_modulus = bgc_vector3_get_square_modulus_fp32(end);
if (start_square_modulus <= BGC_SQUARE_EPSYLON_FP32 || end_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
bgc_versor_reset_fp32(result);
return BGC_ZERO_TURN;
}
return _bgc_versor_make_direction_turn_fp32(start, end, start_square_modulus * end_square_modulus, result);
}
int bgc_versor_make_direction_difference_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, BgcVersorFP64* result)
{
const double start_square_modulus = bgc_vector3_get_square_modulus_fp64(start);
const double end_square_modulus = bgc_vector3_get_square_modulus_fp64(end);
if (start_square_modulus <= BGC_SQUARE_EPSYLON_FP64 || end_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
bgc_versor_reset_fp64(result);
return BGC_ZERO_TURN;
}
return _bgc_versor_make_direction_turn_fp64(start, end, start_square_modulus * end_square_modulus, result);
}
// =============== Set Directions =============== //
inline int _bgc_versor_validate_basis_fp32(const float primary_square_modulus, const float auxiliary_square_modulus, const float orthogonal_square_modulus)
{
if (primary_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
//TODO: add error code for: primary_vector is zero
return BGC_FAILED;
}
if (auxiliary_square_modulus <= BGC_SQUARE_EPSYLON_FP32) {
//TODO: add error code for: auxiliary_vector is zero
return BGC_FAILED;
}
if (orthogonal_square_modulus / (primary_square_modulus * auxiliary_square_modulus) <= BGC_SQUARE_EPSYLON_FP32) {
//TODO: add error code for: primary_vector and auxiliary_vector are parallel
return BGC_FAILED;
}
return BGC_SUCCESS;
}
inline int _bgc_versor_validate_basis_fp64(const double primary_square_modulus, const double auxiliary_square_modulus, const double orthogonal_square_modulus)
{
if (primary_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
//TODO: add error code for: primary_vector is zero
return BGC_FAILED;
}
if (auxiliary_square_modulus <= BGC_SQUARE_EPSYLON_FP64) {
//TODO: add error code for: auxiliary_vector is zero
return BGC_FAILED;
}
if (orthogonal_square_modulus / (primary_square_modulus * auxiliary_square_modulus) <= BGC_SQUARE_EPSYLON_FP64) {
//TODO: add error code for: primary_vector and auxiliary_vector are parallel
return BGC_FAILED;
}
return BGC_SUCCESS;
}
int bgc_versor_make_basis_difference_fp32(
const BgcVector3FP32* initial_primary_direction,
const BgcVector3FP32* initial_auxiliary_direction,
const BgcVector3FP32* final_primary_direction,
const BgcVector3FP32* final_auxiliary_direction,
BgcVersorFP32* result
)
{
BgcVector3FP32 initial_orthogonal_direction, turned_orthogonal_direction, final_orthogonal_direction;
// Step 1: Validate initial basis:
bgc_vector3_get_cross_product_fp32(initial_primary_direction, initial_auxiliary_direction, &initial_orthogonal_direction);
const float initial_primary_square_modulus = bgc_vector3_get_square_modulus_fp32(initial_primary_direction);
const float initial_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp32(initial_auxiliary_direction);
const float initial_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp32(&initial_orthogonal_direction);
const int initial_basis_valudation = _bgc_versor_validate_basis_fp32(initial_primary_square_modulus, initial_auxiliary_square_modulus, initial_orthogonal_square_modulus);
if (initial_basis_valudation != BGC_SUCCESS) {
return initial_basis_valudation;
}
// Step 1: Validate final basis:
bgc_vector3_get_cross_product_fp32(final_primary_direction, final_auxiliary_direction, &final_orthogonal_direction);
const float final_primary_square_modulus = bgc_vector3_get_square_modulus_fp32(final_primary_direction);
const float final_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp32(final_auxiliary_direction);
const float final_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp32(&final_orthogonal_direction);
const int final_basis_valudation = _bgc_versor_validate_basis_fp32(final_primary_square_modulus, final_auxiliary_square_modulus, final_orthogonal_square_modulus);
if (final_basis_valudation != BGC_SUCCESS) {
return final_basis_valudation;
}
// Step 3: Validate normalize orthogonal vectors:
bgc_vector3_divide_fp32(&initial_orthogonal_direction, sqrtf(initial_orthogonal_square_modulus), &initial_orthogonal_direction);
bgc_vector3_divide_fp32(&final_orthogonal_direction, sqrtf(final_orthogonal_square_modulus), &final_orthogonal_direction);
BgcVersorFP32 turn1, turn2;
// Step 4: Find turn1
int turn1_code = _bgc_versor_make_direction_turn_fp32(initial_primary_direction, final_primary_direction, initial_primary_square_modulus * final_primary_square_modulus, &turn1);
if (turn1_code == BGC_OPPOSITE) {
bgc_versor_set_values_fp32(0.0f, initial_orthogonal_direction.x1, initial_orthogonal_direction.x2, initial_orthogonal_direction.x3, &turn1);
}
bgc_versor_turn_vector_fp32(&turn1, &initial_orthogonal_direction, &turned_orthogonal_direction);
// Step 5: Find turn2:
int turn2_code = _bgc_versor_make_direction_turn_fp32(&turned_orthogonal_direction, &final_orthogonal_direction, 1.0f, &turn2);
if (turn2_code == BGC_OPPOSITE) {
const float turn2_multiplier = sqrtf(1.0f / final_primary_square_modulus);
bgc_versor_set_values_fp32(0.0f,
final_primary_direction->x1 * turn2_multiplier,
final_primary_direction->x2 * turn2_multiplier,
final_primary_direction->x3 * turn2_multiplier,
&turn2
);
}
// Step 6: Combine turn1 and turn2:
bgc_versor_combine_fp32(&turn2, &turn1, result);
return BGC_SUCCESS;
}
int bgc_versor_make_basis_difference_fp64(
const BgcVector3FP64* initial_primary_direction,
const BgcVector3FP64* initial_auxiliary_direction,
const BgcVector3FP64* final_primary_direction,
const BgcVector3FP64* final_auxiliary_direction,
BgcVersorFP64* result
)
{
BgcVector3FP64 initial_orthogonal_direction, turned_orthogonal_direction, final_orthogonal_direction;
// Step 1: Validate initial basis:
bgc_vector3_get_cross_product_fp64(initial_primary_direction, initial_auxiliary_direction, &initial_orthogonal_direction);
const double initial_primary_square_modulus = bgc_vector3_get_square_modulus_fp64(initial_primary_direction);
const double initial_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp64(initial_auxiliary_direction);
const double initial_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp64(&initial_orthogonal_direction);
const int initial_basis_valudation = _bgc_versor_validate_basis_fp64(initial_primary_square_modulus, initial_auxiliary_square_modulus, initial_orthogonal_square_modulus);
if (initial_basis_valudation != BGC_SUCCESS) {
return initial_basis_valudation;
}
// Step 1: Validate final basis:
bgc_vector3_get_cross_product_fp64(final_primary_direction, final_auxiliary_direction, &final_orthogonal_direction);
const double final_primary_square_modulus = bgc_vector3_get_square_modulus_fp64(final_primary_direction);
const double final_auxiliary_square_modulus = bgc_vector3_get_square_modulus_fp64(final_auxiliary_direction);
const double final_orthogonal_square_modulus = bgc_vector3_get_square_modulus_fp64(&final_orthogonal_direction);
const int final_basis_valudation = _bgc_versor_validate_basis_fp64(final_primary_square_modulus, final_auxiliary_square_modulus, final_orthogonal_square_modulus);
if (final_basis_valudation != BGC_SUCCESS) {
return final_basis_valudation;
}
// Step 3: Validate normalize orthogonal vectors:
bgc_vector3_divide_fp64(&initial_orthogonal_direction, sqrt(initial_orthogonal_square_modulus), &initial_orthogonal_direction);
bgc_vector3_divide_fp64(&final_orthogonal_direction, sqrt(final_orthogonal_square_modulus), &final_orthogonal_direction);
BgcVersorFP64 turn1, turn2;
// Step 4: Find turn1
int turn1_code = _bgc_versor_make_direction_turn_fp64(initial_primary_direction, final_primary_direction, initial_primary_square_modulus * final_primary_square_modulus, &turn1);
if (turn1_code == BGC_OPPOSITE) {
bgc_versor_set_values_fp64(0.0, initial_orthogonal_direction.x1, initial_orthogonal_direction.x2, initial_orthogonal_direction.x3, &turn1);
}
bgc_versor_turn_vector_fp64(&turn1, &initial_orthogonal_direction, &turned_orthogonal_direction);
// Step 5: Find turn2:
int turn2_code = _bgc_versor_make_direction_turn_fp64(&turned_orthogonal_direction, &final_orthogonal_direction, 1.0f, &turn2);
if (turn2_code == BGC_OPPOSITE) {
const double turn2_multiplier = sqrt(1.0 / final_primary_square_modulus);
bgc_versor_set_values_fp64(0.0,
final_primary_direction->x1 * turn2_multiplier,
final_primary_direction->x2 * turn2_multiplier,
final_primary_direction->x3 * turn2_multiplier,
&turn2
);
}
// Step 6: Combine turn1 and turn2:
bgc_versor_combine_fp64(&turn2, &turn1, result);
return BGC_SUCCESS;
}
// =============== Get Exponation =============== // // =============== Get Exponation =============== //
void bgc_versor_get_exponation_fp32(const BgcVersorFP32* base, const float exponent, BgcVersorFP32* power) void bgc_versor_get_exponation_fp32(const BgcVersorFP32* base, const float exponent, BgcVersorFP32* power)

View file

@ -8,6 +8,20 @@
#include "vector3.h" #include "vector3.h"
#include "rotation3.h" #include "rotation3.h"
#include "matrix3x3.h" #include "matrix3x3.h"
#include "quaternion.h"
#define BGC_SOME_TURN 1
#define BGC_ZERO_TURN 0
#define BGC_OPPOSITE -1
#define BGC_ERROR_PRIMARY_DIRECTION_UNKNOWN -3001
#define BGC_ERROR_PRIMARY_VECTOR_IS_ZERO -3002
#define BGC_ERROR_AUXILIARY_DIRECTION_UNKNOWN -3011
#define BGC_ERROR_AUXILIARY_VECTOR_IS_ZERO -3012
#define BGC_ERROR_DIRECTIONS_PARALLEL -3021
#define BGC_ERROR_VECTORS_PARALLEL -3022
// =================== Types ==================== // // =================== Types ==================== //
@ -112,6 +126,30 @@ inline void bgc_versor_set_rotation_fp64(const BgcRotation3FP64* rotation, BgcVe
bgc_versor_set_turn_fp64(rotation->axis.x1, rotation->axis.x2, rotation->axis.x3, rotation->radians, BGC_ANGLE_UNIT_RADIANS, result); bgc_versor_set_turn_fp64(rotation->axis.x1, rotation->axis.x2, rotation->axis.x3, rotation->radians, BGC_ANGLE_UNIT_RADIANS, result);
} }
// ========= Make Direction Difference ========== //
int bgc_versor_make_direction_difference_fp32(const BgcVector3FP32* start, const BgcVector3FP32* end, BgcVersorFP32* result);
int bgc_versor_make_direction_difference_fp64(const BgcVector3FP64* start, const BgcVector3FP64* end, BgcVersorFP64* result);
// =============== Set Directions =============== //
int bgc_versor_make_basis_difference_fp32(
const BgcVector3FP32* initial_primary_direction,
const BgcVector3FP32* initial_auxiliary_direction,
const BgcVector3FP32* final_primary_direction,
const BgcVector3FP32* final_auxiliary_direction,
BgcVersorFP32* result
);
int bgc_versor_make_basis_difference_fp64(
const BgcVector3FP64* initial_primary_direction,
const BgcVector3FP64* initial_auxiliary_direction,
const BgcVector3FP64* final_primary_direction,
const BgcVector3FP64* final_auxiliary_direction,
BgcVersorFP64* result
);
// ==================== Copy ==================== // // ==================== Copy ==================== //
inline void bgc_versor_copy_fp32(const BgcVersorFP32* source, BgcVersorFP32* destination) inline void bgc_versor_copy_fp32(const BgcVersorFP32* source, BgcVersorFP32* destination)